picarta


Namepicarta JSON
Version 0.4 PyPI version JSON
download
home_pagehttps://github.com/PicartaAI/Picarta-API
SummaryA package to geolocate images from URL or local files using Picarta AI
upload_time2024-08-03 12:09:08
maintainerNone
docs_urlNone
authorPicarta
requires_python>=3.6
licenseNone
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Picarta

A Python package to geolocate images from URL or local files using [Picarta.ai](https://picarta.ai) API 🌍🔍.


### Overview

The Picarta Image Geolocalization [API](https://picarta.ai/api) allows users to localize images and obtain predictions about their geographic location based on their content and/or embedded metadata. Users can provide an image either from a local file or via a URL and receive predictions about the location depicted in the image. The API returns information such as city, province, country, GPS coordinates, and confidence scores for each prediction.

### Authentication

To access the [API](https://picarta.ai/api), users need to provide an API token in the request headers. Users can obtain an API token by registering on the [Picarta](https://picarta.ai) website.

### Installation

To install the `picarta` package, use pip:

```bash
pip install picarta
```

### Usage

#### Request Format

The API accepts HTTP POST requests with a JSON payload containing the following parameters:

- `TOKEN`: User's API token.
- `IMAGE`: image path or URL of the image to localize.
- `TOP_K` (Optional): Number of top predictions to return (default is 10, maximum is 100).
- `Center_LATITUDE` (Optional): Latitude of the center of the search area.
- `Center_LONGITUDE` (Optional): Longitude of the center of the search area.
- `RADIUS` (Optional): Radius of the search area around the center point in kilometers.

#### Example Request using the `picarta` Package

```python
from picarta import Picarta

api_token = "YOUR_API_TOKEN"
localizer = Picarta(api_token)

# Geolocate a local image
result = localizer.localize(img_path="/path/to/local/image.jpg")

print(result)

# Geolocate an image from URL with optional parameters for a specific location search
result = localizer.localize(
img_path="https://upload.wikimedia.org/wikipedia/commons/8/83/San_Gimignano_03.jpg",
top_k=10,
center_latitude=43.464, 
center_longitude=11.038,
radius=100)

print(result)

```

#### Response Format
The API returns a JSON object containing geographic location results, including metadata about the image and a dictionary of topk predictions.

#### Example API Response

```json
{
  "ai_country": "Fiji",
  "ai_lat": -10.932661290178117,
  "ai_lon": 173.54167690802137,
  "camera_maker": "NIKON CORPORATION",
  "camera_model": "NIKON D200",
  "city": "Ahau",
  "confidence": 0.7205776784126713,
  "province": "Rotuma",
  "timestamp": "2010:09:21 12:04:46",
  "topk_predictions_dict": {
    "1": {
      "address": {"city": "Ahau", "country": "Fiji", "province": "Rotuma"},
      "confidence": 0.7205776784126713,
      "gps": [-10.932661290178117, 173.54167690802137]
    },
    "2": {
      "address": {"city": "Nghi Xuan", "country": "Vietnam", "province": "Ha Tinh"},
      "confidence": 0.13465818962254223,
      "gps": [18.831436938230198, 106.00851919090474]
    },
    "3": {
      "address": {"city": "Hanga Roa", "country": "Chile", "province": "Valparaiso"},
      "confidence": 0.03465818962254226,
      "gps": [-42.42505486943787, -118.63631306266818]
    }
  }
}
```

#### Additional Notes

- `topk_predictions_dict` is presented in the second version of the API.
- `topk_predictions_dict[1]` is equal to province, ai_country, city, ai_lat, ai_lon, and ai_confidence. (It shows the top 1 result, which was in the first version of the API).
- The API could also return the following values if the EXIF data exists in the images:
    - `exif_lat`: Latitude from EXIF metadata.
    - `exif_lon`: Longitude from EXIF metadata.
    - `exif_country`: Country name from EXIF metadata.

### Contact Information

For any inquiries or assistance, feel free to contact us via:

- Email: [info@picarta.ai](mailto:info@picarta.ai)
- Discord: [Join our Discord channel](https://discord.gg/g5BAd2UFbs)
- Share your feedback: [API Feedback Survey](https://forms.gle/JokVe1ZRKP1hjsA49)




            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/PicartaAI/Picarta-API",
    "name": "picarta",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": null,
    "keywords": null,
    "author": "Picarta",
    "author_email": "info@picarta.ai",
    "download_url": "https://files.pythonhosted.org/packages/b4/4c/b035d3c6dcd524d81bebfabad5bc335792ef94318a679d208d5e66339af5/picarta-0.4.tar.gz",
    "platform": null,
    "description": "# Picarta\n\nA Python package to geolocate images from URL or local files using [Picarta.ai](https://picarta.ai) API \ud83c\udf0d\ud83d\udd0d.\n\n\n### Overview\n\nThe Picarta Image Geolocalization [API](https://picarta.ai/api) allows users to localize images and obtain predictions about their geographic location based on their content and/or embedded metadata. Users can provide an image either from a local file or via a URL and receive predictions about the location depicted in the image. The API returns information such as city, province, country, GPS coordinates, and confidence scores for each prediction.\n\n### Authentication\n\nTo access the [API](https://picarta.ai/api), users need to provide an API token in the request headers. Users can obtain an API token by registering on the [Picarta](https://picarta.ai) website.\n\n### Installation\n\nTo install the `picarta` package, use pip:\n\n```bash\npip install picarta\n```\n\n### Usage\n\n#### Request Format\n\nThe API accepts HTTP POST requests with a JSON payload containing the following parameters:\n\n- `TOKEN`: User's API token.\n- `IMAGE`: image path or URL of the image to localize.\n- `TOP_K` (Optional): Number of top predictions to return (default is 10, maximum is 100).\n- `Center_LATITUDE` (Optional): Latitude of the center of the search area.\n- `Center_LONGITUDE` (Optional): Longitude of the center of the search area.\n- `RADIUS` (Optional): Radius of the search area around the center point in kilometers.\n\n#### Example Request using the `picarta` Package\n\n```python\nfrom picarta import Picarta\n\napi_token = \"YOUR_API_TOKEN\"\nlocalizer = Picarta(api_token)\n\n# Geolocate a local image\nresult = localizer.localize(img_path=\"/path/to/local/image.jpg\")\n\nprint(result)\n\n# Geolocate an image from URL with optional parameters for a specific location search\nresult = localizer.localize(\nimg_path=\"https://upload.wikimedia.org/wikipedia/commons/8/83/San_Gimignano_03.jpg\",\ntop_k=10,\ncenter_latitude=43.464, \ncenter_longitude=11.038,\nradius=100)\n\nprint(result)\n\n```\n\n#### Response Format\nThe API returns a JSON object containing geographic location results, including metadata about the image and a dictionary of topk predictions.\n\n#### Example API Response\n\n```json\n{\n  \"ai_country\": \"Fiji\",\n  \"ai_lat\": -10.932661290178117,\n  \"ai_lon\": 173.54167690802137,\n  \"camera_maker\": \"NIKON CORPORATION\",\n  \"camera_model\": \"NIKON D200\",\n  \"city\": \"Ahau\",\n  \"confidence\": 0.7205776784126713,\n  \"province\": \"Rotuma\",\n  \"timestamp\": \"2010:09:21 12:04:46\",\n  \"topk_predictions_dict\": {\n    \"1\": {\n      \"address\": {\"city\": \"Ahau\", \"country\": \"Fiji\", \"province\": \"Rotuma\"},\n      \"confidence\": 0.7205776784126713,\n      \"gps\": [-10.932661290178117, 173.54167690802137]\n    },\n    \"2\": {\n      \"address\": {\"city\": \"Nghi Xuan\", \"country\": \"Vietnam\", \"province\": \"Ha Tinh\"},\n      \"confidence\": 0.13465818962254223,\n      \"gps\": [18.831436938230198, 106.00851919090474]\n    },\n    \"3\": {\n      \"address\": {\"city\": \"Hanga Roa\", \"country\": \"Chile\", \"province\": \"Valparaiso\"},\n      \"confidence\": 0.03465818962254226,\n      \"gps\": [-42.42505486943787, -118.63631306266818]\n    }\n  }\n}\n```\n\n#### Additional Notes\n\n- `topk_predictions_dict` is presented in the second version of the API.\n- `topk_predictions_dict[1]` is equal to province, ai_country, city, ai_lat, ai_lon, and ai_confidence. (It shows the top 1 result, which was in the first version of the API).\n- The API could also return the following values if the EXIF data exists in the images:\n    - `exif_lat`: Latitude from EXIF metadata.\n    - `exif_lon`: Longitude from EXIF metadata.\n    - `exif_country`: Country name from EXIF metadata.\n\n### Contact Information\n\nFor any inquiries or assistance, feel free to contact us via:\n\n- Email: [info@picarta.ai](mailto:info@picarta.ai)\n- Discord: [Join our Discord channel](https://discord.gg/g5BAd2UFbs)\n- Share your feedback: [API Feedback Survey](https://forms.gle/JokVe1ZRKP1hjsA49)\n\n\n\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "A package to geolocate images from URL or local files using Picarta AI",
    "version": "0.4",
    "project_urls": {
        "Homepage": "https://github.com/PicartaAI/Picarta-API"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "b0b700e9788d6636532f82950153cb70db8644464d30416433793a996d1384ad",
                "md5": "699d01cd6f8d7058a9602758606f1c65",
                "sha256": "d25ad3e70c459df18a1fa248737eaf90e44f128a6973d24b461574fe914b58a6"
            },
            "downloads": -1,
            "filename": "picarta-0.4-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "699d01cd6f8d7058a9602758606f1c65",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.6",
            "size": 4687,
            "upload_time": "2024-08-03T12:09:07",
            "upload_time_iso_8601": "2024-08-03T12:09:07.573169Z",
            "url": "https://files.pythonhosted.org/packages/b0/b7/00e9788d6636532f82950153cb70db8644464d30416433793a996d1384ad/picarta-0.4-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "b44cb035d3c6dcd524d81bebfabad5bc335792ef94318a679d208d5e66339af5",
                "md5": "24262f6723209d82beed5a4be09c2c84",
                "sha256": "492dac65f72f9f1346eeaf70c739abf16f53d9c87243ff7387770d5323125b64"
            },
            "downloads": -1,
            "filename": "picarta-0.4.tar.gz",
            "has_sig": false,
            "md5_digest": "24262f6723209d82beed5a4be09c2c84",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 3983,
            "upload_time": "2024-08-03T12:09:08",
            "upload_time_iso_8601": "2024-08-03T12:09:08.760605Z",
            "url": "https://files.pythonhosted.org/packages/b4/4c/b035d3c6dcd524d81bebfabad5bc335792ef94318a679d208d5e66339af5/picarta-0.4.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-08-03 12:09:08",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "PicartaAI",
    "github_project": "Picarta-API",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "picarta"
}
        
Elapsed time: 0.28517s