pkbar


Namepkbar JSON
Version 0.5 PyPI version JSON
download
home_pagehttps://github.com/yueyericardo/pkbar
SummaryKeras Progress Bar for PyTorch
upload_time2020-09-06 20:15:35
maintainer
docs_urlNone
authorRichard Xue
requires_python
licenseApache License 2.0
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # pkbar
![Test](https://github.com/yueyericardo/pkbar/workflows/Test/badge.svg) [![PyPI version](https://badge.fury.io/py/pkbar.svg)](https://badge.fury.io/py/pkbar) [![pypidownload](https://img.shields.io/pypi/dm/pkbar.svg)](https://pypistats.org/packages/pkbar)

Keras style progressbar for pytorch (PK Bar)

### 1. Show
- `pkbar.Pbar` (progress bar)
```
loading and processing dataset
10/10  [==============================] - 1.0s
```

- `pkbar.Kbar` (keras bar)
```
Epoch: 1/3
100/100 [========] - 10s 102ms/step - loss: 3.7782 - rmse: 1.1650 - val_loss: 0.1823 - val_rmse: 0.4269
Epoch: 2/3
100/100 [========] - 10s 101ms/step - loss: 0.1819 - rmse: 0.4265 - val_loss: 0.1816 - val_rmse: 0.4261
Epoch: 3/3
100/100 [========] - 10s 101ms/step - loss: 0.1813 - rmse: 0.4258 - val_loss: 0.1810 - val_rmse: 0.4254
```

### 2. Install 
```
pip install pkbar
```

### 3. Usage

- `pkbar.Pbar` (progress bar)
```python
import pkbar
import time

pbar = pkbar.Pbar(name='loading and processing dataset', target=10)

for i in range(10):
    time.sleep(0.1)
    pbar.update(i)
```
```
loading and processing dataset
10/10  [==============================] - 1.0s
```

- `pkbar.Kbar` (keras bar) [for a concreate example](https://github.com/yueyericardo/pkbar/blob/master/tests/test.py#L16)
```python
import pkbar
import torch

# training loop
train_per_epoch = num_of_batches_per_epoch

for epoch in range(num_epochs):
    ################################### Initialization ########################################
    kbar = pkbar.Kbar(target=train_per_epoch, epoch=epoch, num_epochs=num_epochs, width=8, always_stateful=False)
    # By default, all metrics are averaged over time. If you don't want this behavior, you could either:
    # 1. Set always_stateful to True, or
    # 2. Set stateful_metrics=["loss", "rmse", "val_loss", "val_rmse"], Metrics in this list will be displayed as-is.
    # All others will be averaged by the progbar before display.
    ###########################################################################################

    # training
    for i in range(train_per_epoch):
        outputs = model(inputs)
        train_loss = criterion(outputs, targets)
        train_rmse = torch.sqrt(train_loss)
        optimizer.zero_grad()
        train_loss.backward()
        optimizer.step()

        ############################# Update after each batch ##################################
        kbar.update(i, values=[("loss", train_loss), ("rmse", train_rmse)])
        ########################################################################################

    # validation
    outputs = model(inputs)
    val_loss = criterion(outputs, targets)
    val_rmse = torch.sqrt(val_loss)

    ################################ Add validation metrics ###################################
    kbar.add(1, values=[("val_loss", val_loss), ("val_rmse", val_rmse)])
    ###########################################################################################
```
```
Epoch: 1/3
100/100 [========] - 10s 102ms/step - loss: 3.7782 - rmse: 1.1650 - val_loss: 0.1823 - val_rmse: 0.4269
Epoch: 2/3
100/100 [========] - 10s 101ms/step - loss: 0.1819 - rmse: 0.4265 - val_loss: 0.1816 - val_rmse: 0.4261
Epoch: 3/3
100/100 [========] - 10s 101ms/step - loss: 0.1813 - rmse: 0.4258 - val_loss: 0.1810 - val_rmse: 0.4254
```

### 4. Acknowledge
Keras progbar's code from [`tf.keras.utils.Progbar`](https://github.com/tensorflow/tensorflow/blob/r1.14/tensorflow/python/keras/utils/generic_utils.py#L313)



            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/yueyericardo/pkbar",
    "name": "pkbar",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "",
    "author": "Richard Xue",
    "author_email": "yueyericardo@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/12/4d/c4210a0743ef62ddfa96b3b501c71a214718189f65df8a22f1eb37f256e3/pkbar-0.5.tar.gz",
    "platform": "",
    "description": "# pkbar\n![Test](https://github.com/yueyericardo/pkbar/workflows/Test/badge.svg) [![PyPI version](https://badge.fury.io/py/pkbar.svg)](https://badge.fury.io/py/pkbar) [![pypidownload](https://img.shields.io/pypi/dm/pkbar.svg)](https://pypistats.org/packages/pkbar)\n\nKeras style progressbar for pytorch (PK Bar)\n\n### 1. Show\n- `pkbar.Pbar` (progress bar)\n```\nloading and processing dataset\n10/10  [==============================] - 1.0s\n```\n\n- `pkbar.Kbar` (keras bar)\n```\nEpoch: 1/3\n100/100 [========] - 10s 102ms/step - loss: 3.7782 - rmse: 1.1650 - val_loss: 0.1823 - val_rmse: 0.4269\nEpoch: 2/3\n100/100 [========] - 10s 101ms/step - loss: 0.1819 - rmse: 0.4265 - val_loss: 0.1816 - val_rmse: 0.4261\nEpoch: 3/3\n100/100 [========] - 10s 101ms/step - loss: 0.1813 - rmse: 0.4258 - val_loss: 0.1810 - val_rmse: 0.4254\n```\n\n### 2. Install \n```\npip install pkbar\n```\n\n### 3. Usage\n\n- `pkbar.Pbar` (progress bar)\n```python\nimport pkbar\nimport time\n\npbar = pkbar.Pbar(name='loading and processing dataset', target=10)\n\nfor i in range(10):\n    time.sleep(0.1)\n    pbar.update(i)\n```\n```\nloading and processing dataset\n10/10  [==============================] - 1.0s\n```\n\n- `pkbar.Kbar` (keras bar) [for a concreate example](https://github.com/yueyericardo/pkbar/blob/master/tests/test.py#L16)\n```python\nimport pkbar\nimport torch\n\n# training loop\ntrain_per_epoch = num_of_batches_per_epoch\n\nfor epoch in range(num_epochs):\n    ################################### Initialization ########################################\n    kbar = pkbar.Kbar(target=train_per_epoch, epoch=epoch, num_epochs=num_epochs, width=8, always_stateful=False)\n    # By default, all metrics are averaged over time. If you don't want this behavior, you could either:\n    # 1. Set always_stateful to True, or\n    # 2. Set stateful_metrics=[\"loss\", \"rmse\", \"val_loss\", \"val_rmse\"], Metrics in this list will be displayed as-is.\n    # All others will be averaged by the progbar before display.\n    ###########################################################################################\n\n    # training\n    for i in range(train_per_epoch):\n        outputs = model(inputs)\n        train_loss = criterion(outputs, targets)\n        train_rmse = torch.sqrt(train_loss)\n        optimizer.zero_grad()\n        train_loss.backward()\n        optimizer.step()\n\n        ############################# Update after each batch ##################################\n        kbar.update(i, values=[(\"loss\", train_loss), (\"rmse\", train_rmse)])\n        ########################################################################################\n\n    # validation\n    outputs = model(inputs)\n    val_loss = criterion(outputs, targets)\n    val_rmse = torch.sqrt(val_loss)\n\n    ################################ Add validation metrics ###################################\n    kbar.add(1, values=[(\"val_loss\", val_loss), (\"val_rmse\", val_rmse)])\n    ###########################################################################################\n```\n```\nEpoch: 1/3\n100/100 [========] - 10s 102ms/step - loss: 3.7782 - rmse: 1.1650 - val_loss: 0.1823 - val_rmse: 0.4269\nEpoch: 2/3\n100/100 [========] - 10s 101ms/step - loss: 0.1819 - rmse: 0.4265 - val_loss: 0.1816 - val_rmse: 0.4261\nEpoch: 3/3\n100/100 [========] - 10s 101ms/step - loss: 0.1813 - rmse: 0.4258 - val_loss: 0.1810 - val_rmse: 0.4254\n```\n\n### 4. Acknowledge\nKeras progbar's code from [`tf.keras.utils.Progbar`](https://github.com/tensorflow/tensorflow/blob/r1.14/tensorflow/python/keras/utils/generic_utils.py#L313)\n\n\n",
    "bugtrack_url": null,
    "license": "Apache License 2.0",
    "summary": "Keras Progress Bar for PyTorch",
    "version": "0.5",
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "md5": "00d79b825465b2e1e79b3770f4061d57",
                "sha256": "23be653811ffc15f1eec596eaa03fe9e639fd2f8757e88f25627d5123b28f714"
            },
            "downloads": -1,
            "filename": "pkbar-0.5-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "00d79b825465b2e1e79b3770f4061d57",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 9179,
            "upload_time": "2020-09-06T20:15:33",
            "upload_time_iso_8601": "2020-09-06T20:15:33.809083Z",
            "url": "https://files.pythonhosted.org/packages/95/8f/28e0a21b27f836a8903315050db17dd68e55bf477b6fde52d1c68da3c8a6/pkbar-0.5-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "md5": "3cb919745143b5398066d1be875afcdb",
                "sha256": "3a6c389688cfa70c84433171ece71098c7f7181de3ba8375019de5713501ef15"
            },
            "downloads": -1,
            "filename": "pkbar-0.5.tar.gz",
            "has_sig": false,
            "md5_digest": "3cb919745143b5398066d1be875afcdb",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 10501,
            "upload_time": "2020-09-06T20:15:35",
            "upload_time_iso_8601": "2020-09-06T20:15:35.274263Z",
            "url": "https://files.pythonhosted.org/packages/12/4d/c4210a0743ef62ddfa96b3b501c71a214718189f65df8a22f1eb37f256e3/pkbar-0.5.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2020-09-06 20:15:35",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "yueyericardo",
    "github_project": "pkbar",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "lcname": "pkbar"
}
        
Elapsed time: 0.04532s