privateai-client


Nameprivateai-client JSON
Version 3.9.0 PyPI version JSON
download
home_pageNone
SummaryA thin client for communicating with the Private AI de-identication API.
upload_time2024-08-15 19:47:49
maintainerNone
docs_urlNone
authorNone
requires_python>=3.8
licenseNone
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Private AI Python Client

A Python client library for communicating with the Private AI API. This document provides information about how to best use the client. For more information, see Private AI's [API Documentation.][1]

### Quick Links

1. [Installation](#installation)
1. [Quick Start](#quick-start)
1. [Running the tests](#testing)
1. [Working with the Client](#client)
1. [Request Objects](#request-objects)
1. [Sample Use](#sample-use)

### Installation <a name=installation></a>

```
pip install privateai_client
```

### Quick Start <a name=quick-start></a>

```python

from privateai_client import PAIClient
from privateai_client import request_objects

client = PAIClient(url="http://localhost:8080")
text_request = request_objects.process_text_obj(text=["My sample name is John Smith"])
response = client.process_text(text_request)

print(text_request.text)
print(response.processed_text)


```

Output:

```
['My sample name is John Smith']
['My sample name is [NAME_1]']
```

### Running the tests <a name=testing></a>

We use [pytest](https://docs.pytest.org/) to run our tests in the tests folder.

To run from command line, ensure you have pytest installed, and then run `pytest` from the main project folder.

```shell
pip install -U pytest -y
pytest
```

Alternatively, you can run automatically run all tests from the Testing window in Visual Studio Code.

### Working With The Client <a name=client></a>

#### Initializing the Client

The PAI client requires a scheme, host, and optional port to initialize. 
Alternatively, a full url can be used.
Once created, the connection can be tested with the client's `ping` function

```python
scheme = 'http'
host = 'localhost'
port= '8080'
client = PAIClient(scheme, host, port)

client.ping()


url = "http://localhost:8080"
client = PAIClient(url=url)

client.ping()
```

Output:

```
True
True
```

#### Adding Authorization to the Client

```python
from privateai_client import PAIClient
# On initialization
client = PAIClient(url="http://localhost:8080", api_key='testkey')

# After initialization
client = PAIClient(url="http://localhost:8080")
client.ping()
client.add_api_key("testkey")
client.ping()
```
Output:

```
The request returned with a 401 Unauthorized
True
```


#### Making Requests

Once initialized the client can be used to make any request listed in the [Private-AI documentation][1]

Available requests:

| Client Function          | Endpoint                   |
| ------------------------ | -------------------------- |
| `get_version()`          | `/`                        |
| `ping()`                 | `/healthz`                 |
| `get_metrics()`          | `/metrics`                 |
| `get_diagnostics()`      | `/diagnostics`             |
| `process_text()`         | `/v3/process/text`         |
| `process_files_uri()`    | `/v3/process/files/uri`    |
| `process_files_base64()` | `/v3/process/files/base64` |
| `bleep()`                | `/v3/bleep`                |

Requests can be made using dictionaries:

```python
sample_text = ["This is John Smith's sample dictionary request"]
text_dict_request = {"text": sample_text}

response = client.process_text(text_dict_request)
print(response.processed_text)
```

Output:

```
["This is [NAME_1]'s sample dictionary request"]
```

or using built-in request objects:

```python
from privateai_client import request_objects

sample_text = "This is John Smith's sample process text object request"
text_request_object =  request_objects.process_text_obj(text=[sample_text])

response = client.process_text(text_request_object)
print(response.processed_text)
```

Output:

```
["This is [NAME_1]'s sample process text object request"]
```

### Request Objects <a name=request-objects></a>

Request objects are a simple way of creating request bodies without the tediousness of writing dictionaries. Every post request (as listed in the [Private-AI documentation][1]) has its own request own request object.

```python
from privateai_client import request_objects

sample_obj = request_objects.file_uri_obj(uri='path/to/file.jpg')
sample_obj.uri
```

Output:

```
'path/to/file.jpg'
```

Additionally there are request objects for each nested dictionary of a request:

```python
from privateai_client import request_objects

sample_text = "This is John Smith's sample process text object request where names won't be removed"

# sub-dictionary of entity_detection
sample_entity_type_selector = request_objects.entity_type_selector_obj(type="DISABLE", value=['NAME', 'NAME_GIVEN', 'NAME_FAMILY'])

# sub-dictionary of a process text request
sample_entity_detection = request_objects.entity_detection_obj(entity_types=[sample_entity_type_selector])

# request object created using the sub-dictionaries
sample_request = request_objects.process_text_obj(text=[sample_text], entity_detection=sample_entity_detection)
response = client.process_text(sample_request)
print(response.processed_text)
```

Output:

```
["This is John Smith's sample process text object request where names won't be removed"]
```

#### Building Request Objects

Request objects can initialized by passing in all the required values needed for the request as arguments or from a dictionary, using the object's `fromdict` function. Any object can be created as per the [Private AI documentation][1].

```python
# Passing arguments
sample_data = "JVBERi0xLjQKJdPr6eEKMSAwIG9iago8PC9UaXRsZSAoc2FtcGxlKQovUHJvZHVj..."
sample_content_type = "application/pdf"

sample_file_obj = request_objects.file_obj(data=sample_data, content_type=sample_content_type)

# Passing a dictionary using .fromdict()
sample_dict = {"data": "JVBERi0xLjQKJdPr6eEKMSAwIG9iago8PC9UaXRsZSAoc2FtcGxlKQovUHJvZHVj...",
               "content_type": "application/pdf"}

sample_file_obj2 = request_objects.file_obj.fromdict(sample_dict)
```

Request objects also can be formatted as dictionaries, using the request object's `to_dict()` function:

```python
from privateai_client import request_objects

sample_text = "Sample text."
sample_accuracy = "standard"

# Create the nested request objects
sample_entity_type_selector = request_objects.entity_type_selector_obj(type="DISABLE", value=['HIPAA'])
sample_entity_detection = request_objects.entity_detection_obj(
    entity_types=[sample_entity_type_selector],
    accuracy=sample_accuracy
)

# Create the request object
sample_request = request_objects.process_text_obj(text=[sample_text], entity_detection=sample_entity_detection)

# All nested request objects are also formatted
print(sample_request.to_dict())
```

Output:

```
{
 'text': ['Sample text.'],
 'link_batch': False,
 'entity_detection': {'accuracy': 'standard', 'entity_types': [{'type': 'DISABLE', 'value': ['HIPAA']}], 'filter': [], 'return_entity': True},
 'processed_text': {'type': 'MARKER', 'pattern': '[UNIQUE_NUMBERED_ENTITY_TYPE]'}
}
```

### Sample Use <a name=sample-use></a>

#### Processing a directory of files

```python
from privateai_client import PAIClient
from privateai_client.objects import request_objects
import os
import logging

file_dir = "/path/to/file/directory"
client = PAIClient(url="http://localhost:8080")
for file_name in os.listdir(file_dir):
    filepath = os.path.join(file_dir, file_name)
    if not os.path.isfile(filepath):
        continue
    req_obj = request_objects.file_uri_obj(uri=filepath)
    # NOTE this method of file processing requires the container to have an the input and output directories mounted
    resp = client.process_files_uri(req_obj)
```

#### Processing a Base64 file

```python
from privateai_client import PAIClient
from privateai_client.objects import request_objects
import base64
import os
import logging

file_dir = "/path/to/your/file"
file_name = 'sample_file.pdf'
filepath = os.path.join(file_dir,file_name)
file_type= "type/of_file" #eg. application/pdf
client = PAIClient(url="http://localhost:8080")

# Read from file
with open(filepath, "rb") as b64_file:
    file_data = base64.b64encode(b64_file.read())
    file_data = file_data.decode("ascii")

# Make the request
file_obj = request_objects.file_obj(data=file_data, content_type=file_type)
request_obj = request_objects.file_base64_obj(file=file_obj)
resp = client.process_files_base64(request_object=request_obj)

# Write to file
with open(os.path.join(file_dir,f"redacted-{file_name}"), 'wb') as redacted_file:
    processed_file = resp.processed_file.encode("ascii")
    processed_file = base64.b64decode(processed_file, validate=True)
    redacted_file.write(processed_file)
```

#### Bleep an audio file

```python
from privateai_client import PAIClient
from privateai_client.objects import request_objects
import base64
import os
import logging

file_dir = "/path/to/your/file"
file_name = 'sample_file.pdf'
filepath = os.path.join(file_dir,file_name)
file_type= "type/of_file" #eg. audio/mp3 or audio/wav
client = PAIClient(url="http://localhost:8080")


file_dir = "/home/adam/workstation/file_processing/test_audio"
file_name = "test_audio.mp3"
filepath = os.path.join(file_dir,file_name)
file_type = "audio/mp3"
with open(filepath, "rb") as b64_file:
    file_data = base64.b64encode(b64_file.read())
    file_data = file_data.decode("ascii")

file_obj = request_objects.file_obj(data=file_data, content_type=file_type)
timestamp = request_objects.timestamp_obj(start=1.12, end=2.14)
request_obj = request_objects.bleep_obj(file=file_obj, timestamps=[timestamp])

resp = client.bleep(request_object=request_obj)
with open(os.path.join(file_dir,f"redacted-{file_name}"), 'wb') as redacted_file:
    processed_file = resp.bleeped_file.encode("ascii")
    processed_file = base64.b64decode(processed_file, validate=True)
    redacted_file.write(processed_file)
```

#### Working with structured data

Redacting a data frame column by column

##### NOTE: When de-identifying smaller strings of structured data, more accurate results can be achieved by passing in the whole column as a string (including the header) and a delimiter. For example, making a request row by row for a column named SSN will return data identified as PHONE_NUMBER, even when the header is included

```python
# Working with data frames
import pandas as pd
from privateai_client import PAIClient
from privateai_client.objects import request_objects

client = PAIClient(url="http://localhost:8080")
data_frame = pd.DataFrame(
    {
        "Name": [
            "Braund, Mr. Owen Harris",
            "Allen, Mr. William Henry",
            "Bonnell, Miss. Elizabeth",
        ],
        "Age": [22, 35, 58],
        "Sex": ["male", "male", "female"],
    }
)
print(data_frame)
text_req = request_objects.process_text_obj(text=[])
for column in data_frame.columns:
    text_req.text.append(f"{column}:{' | '.join([str(row) for row in data_frame[column]])}")

resp = client.process_text(text_req)
redacted_data = dict()
for row in resp.processed_text:
    data = row.split(':',1)
    redacted_data[data[0]] = data[1].split(' | ')
redacted_data_frame = pd.DataFrame(redacted_data)
print(redacted_data_frame)
```

Redacting cell by cell for columns with large text content

```python
# Working with data frames
import pandas as pd
from privateai_client import PAIClient
from privateai_client.objects import request_objects

client = PAIClient(url="http://localhost:8080")
data_frame = pd.DataFrame(
    {
        "Book": [
            "Treasure Island",
            "Moby Dick",
        ],
        "chapter": [1,1],
        "paragraph": [1,1],
        "text": ["The Old Sea-dog at the Admiral Benbow\nSquire Trelawney, Dr. Livesey, and the rest of...",
                 "Call me Ishmael. Some years ago—never mind how long precisely—having little or no money in my purse..."
                 ]
    }
)
obj = request_objects.process_text_obj
func = client.process_text
data_frame['text'] = [(lambda x: func(obj(text=[x])).processed_text[0])(row) for row in data_frame['text']]
```

Reidentifying Text
```python
from privateai_client import PAIClient
from privateai_client import request_objects

client = PAIClient(url="http://localhost:8080")

# Deidentify the text
initial_text = 'My name is John. I work for Private AI'
request_obj = request_objects.process_text_obj(text=[initial_text])
response_obj = client.process_text(request_obj)

# Build reidentify request object from the deidentified response
new_request_obj = response_obj.get_reidentify_request()
# Call the reidentify Route
new_response_obj = client.reidentify_text(new_request_obj)
print(new_response_obj.body)
```

[1]: https://docs.private-ai.com/reference/latest/operation/process_text_v3_process_text_post/

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "privateai-client",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.8",
    "maintainer_email": null,
    "keywords": null,
    "author": null,
    "author_email": "Adam Guiducci <adam.guiducci@private-ai.com>, Bryan Bell-Smith <bryan.bellsmith@private-ai.com>",
    "download_url": "https://files.pythonhosted.org/packages/59/62/a32ec7a4394df37733b9d61c9cb9b6e1ce0bdb5e1b881aad3b16b7716a9c/privateai_client-3.9.0.tar.gz",
    "platform": null,
    "description": "# Private AI Python Client\n\nA Python client library for communicating with the Private AI API. This document provides information about how to best use the client. For more information, see Private AI's [API Documentation.][1]\n\n### Quick Links\n\n1. [Installation](#installation)\n1. [Quick Start](#quick-start)\n1. [Running the tests](#testing)\n1. [Working with the Client](#client)\n1. [Request Objects](#request-objects)\n1. [Sample Use](#sample-use)\n\n### Installation <a name=installation></a>\n\n```\npip install privateai_client\n```\n\n### Quick Start <a name=quick-start></a>\n\n```python\n\nfrom privateai_client import PAIClient\nfrom privateai_client import request_objects\n\nclient = PAIClient(url=\"http://localhost:8080\")\ntext_request = request_objects.process_text_obj(text=[\"My sample name is John Smith\"])\nresponse = client.process_text(text_request)\n\nprint(text_request.text)\nprint(response.processed_text)\n\n\n```\n\nOutput:\n\n```\n['My sample name is John Smith']\n['My sample name is [NAME_1]']\n```\n\n### Running the tests <a name=testing></a>\n\nWe use [pytest](https://docs.pytest.org/) to run our tests in the tests folder.\n\nTo run from command line, ensure you have pytest installed, and then run `pytest` from the main project folder.\n\n```shell\npip install -U pytest -y\npytest\n```\n\nAlternatively, you can run automatically run all tests from the Testing window in Visual Studio Code.\n\n### Working With The Client <a name=client></a>\n\n#### Initializing the Client\n\nThe PAI client requires a scheme, host, and optional port to initialize. \nAlternatively, a full url can be used.\nOnce created, the connection can be tested with the client's `ping` function\n\n```python\nscheme = 'http'\nhost = 'localhost'\nport= '8080'\nclient = PAIClient(scheme, host, port)\n\nclient.ping()\n\n\nurl = \"http://localhost:8080\"\nclient = PAIClient(url=url)\n\nclient.ping()\n```\n\nOutput:\n\n```\nTrue\nTrue\n```\n\n#### Adding Authorization to the Client\n\n```python\nfrom privateai_client import PAIClient\n# On initialization\nclient = PAIClient(url=\"http://localhost:8080\", api_key='testkey')\n\n# After initialization\nclient = PAIClient(url=\"http://localhost:8080\")\nclient.ping()\nclient.add_api_key(\"testkey\")\nclient.ping()\n```\nOutput:\n\n```\nThe request returned with a 401 Unauthorized\nTrue\n```\n\n\n#### Making Requests\n\nOnce initialized the client can be used to make any request listed in the [Private-AI documentation][1]\n\nAvailable requests:\n\n| Client Function          | Endpoint                   |\n| ------------------------ | -------------------------- |\n| `get_version()`          | `/`                        |\n| `ping()`                 | `/healthz`                 |\n| `get_metrics()`          | `/metrics`                 |\n| `get_diagnostics()`      | `/diagnostics`             |\n| `process_text()`         | `/v3/process/text`         |\n| `process_files_uri()`    | `/v3/process/files/uri`    |\n| `process_files_base64()` | `/v3/process/files/base64` |\n| `bleep()`                | `/v3/bleep`                |\n\nRequests can be made using dictionaries:\n\n```python\nsample_text = [\"This is John Smith's sample dictionary request\"]\ntext_dict_request = {\"text\": sample_text}\n\nresponse = client.process_text(text_dict_request)\nprint(response.processed_text)\n```\n\nOutput:\n\n```\n[\"This is [NAME_1]'s sample dictionary request\"]\n```\n\nor using built-in request objects:\n\n```python\nfrom privateai_client import request_objects\n\nsample_text = \"This is John Smith's sample process text object request\"\ntext_request_object =  request_objects.process_text_obj(text=[sample_text])\n\nresponse = client.process_text(text_request_object)\nprint(response.processed_text)\n```\n\nOutput:\n\n```\n[\"This is [NAME_1]'s sample process text object request\"]\n```\n\n### Request Objects <a name=request-objects></a>\n\nRequest objects are a simple way of creating request bodies without the tediousness of writing dictionaries. Every post request (as listed in the [Private-AI documentation][1]) has its own request own request object.\n\n```python\nfrom privateai_client import request_objects\n\nsample_obj = request_objects.file_uri_obj(uri='path/to/file.jpg')\nsample_obj.uri\n```\n\nOutput:\n\n```\n'path/to/file.jpg'\n```\n\nAdditionally there are request objects for each nested dictionary of a request:\n\n```python\nfrom privateai_client import request_objects\n\nsample_text = \"This is John Smith's sample process text object request where names won't be removed\"\n\n# sub-dictionary of entity_detection\nsample_entity_type_selector = request_objects.entity_type_selector_obj(type=\"DISABLE\", value=['NAME', 'NAME_GIVEN', 'NAME_FAMILY'])\n\n# sub-dictionary of a process text request\nsample_entity_detection = request_objects.entity_detection_obj(entity_types=[sample_entity_type_selector])\n\n# request object created using the sub-dictionaries\nsample_request = request_objects.process_text_obj(text=[sample_text], entity_detection=sample_entity_detection)\nresponse = client.process_text(sample_request)\nprint(response.processed_text)\n```\n\nOutput:\n\n```\n[\"This is John Smith's sample process text object request where names won't be removed\"]\n```\n\n#### Building Request Objects\n\nRequest objects can initialized by passing in all the required values needed for the request as arguments or from a dictionary, using the object's `fromdict` function. Any object can be created as per the [Private AI documentation][1].\n\n```python\n# Passing arguments\nsample_data = \"JVBERi0xLjQKJdPr6eEKMSAwIG9iago8PC9UaXRsZSAoc2FtcGxlKQovUHJvZHVj...\"\nsample_content_type = \"application/pdf\"\n\nsample_file_obj = request_objects.file_obj(data=sample_data, content_type=sample_content_type)\n\n# Passing a dictionary using .fromdict()\nsample_dict = {\"data\": \"JVBERi0xLjQKJdPr6eEKMSAwIG9iago8PC9UaXRsZSAoc2FtcGxlKQovUHJvZHVj...\",\n               \"content_type\": \"application/pdf\"}\n\nsample_file_obj2 = request_objects.file_obj.fromdict(sample_dict)\n```\n\nRequest objects also can be formatted as dictionaries, using the request object's `to_dict()` function:\n\n```python\nfrom privateai_client import request_objects\n\nsample_text = \"Sample text.\"\nsample_accuracy = \"standard\"\n\n# Create the nested request objects\nsample_entity_type_selector = request_objects.entity_type_selector_obj(type=\"DISABLE\", value=['HIPAA'])\nsample_entity_detection = request_objects.entity_detection_obj(\n    entity_types=[sample_entity_type_selector],\n    accuracy=sample_accuracy\n)\n\n# Create the request object\nsample_request = request_objects.process_text_obj(text=[sample_text], entity_detection=sample_entity_detection)\n\n# All nested request objects are also formatted\nprint(sample_request.to_dict())\n```\n\nOutput:\n\n```\n{\n 'text': ['Sample text.'],\n 'link_batch': False,\n 'entity_detection': {'accuracy': 'standard', 'entity_types': [{'type': 'DISABLE', 'value': ['HIPAA']}], 'filter': [], 'return_entity': True},\n 'processed_text': {'type': 'MARKER', 'pattern': '[UNIQUE_NUMBERED_ENTITY_TYPE]'}\n}\n```\n\n### Sample Use <a name=sample-use></a>\n\n#### Processing a directory of files\n\n```python\nfrom privateai_client import PAIClient\nfrom privateai_client.objects import request_objects\nimport os\nimport logging\n\nfile_dir = \"/path/to/file/directory\"\nclient = PAIClient(url=\"http://localhost:8080\")\nfor file_name in os.listdir(file_dir):\n    filepath = os.path.join(file_dir, file_name)\n    if not os.path.isfile(filepath):\n        continue\n    req_obj = request_objects.file_uri_obj(uri=filepath)\n    # NOTE this method of file processing requires the container to have an the input and output directories mounted\n    resp = client.process_files_uri(req_obj)\n```\n\n#### Processing a Base64 file\n\n```python\nfrom privateai_client import PAIClient\nfrom privateai_client.objects import request_objects\nimport base64\nimport os\nimport logging\n\nfile_dir = \"/path/to/your/file\"\nfile_name = 'sample_file.pdf'\nfilepath = os.path.join(file_dir,file_name)\nfile_type= \"type/of_file\" #eg. application/pdf\nclient = PAIClient(url=\"http://localhost:8080\")\n\n# Read from file\nwith open(filepath, \"rb\") as b64_file:\n    file_data = base64.b64encode(b64_file.read())\n    file_data = file_data.decode(\"ascii\")\n\n# Make the request\nfile_obj = request_objects.file_obj(data=file_data, content_type=file_type)\nrequest_obj = request_objects.file_base64_obj(file=file_obj)\nresp = client.process_files_base64(request_object=request_obj)\n\n# Write to file\nwith open(os.path.join(file_dir,f\"redacted-{file_name}\"), 'wb') as redacted_file:\n    processed_file = resp.processed_file.encode(\"ascii\")\n    processed_file = base64.b64decode(processed_file, validate=True)\n    redacted_file.write(processed_file)\n```\n\n#### Bleep an audio file\n\n```python\nfrom privateai_client import PAIClient\nfrom privateai_client.objects import request_objects\nimport base64\nimport os\nimport logging\n\nfile_dir = \"/path/to/your/file\"\nfile_name = 'sample_file.pdf'\nfilepath = os.path.join(file_dir,file_name)\nfile_type= \"type/of_file\" #eg. audio/mp3 or audio/wav\nclient = PAIClient(url=\"http://localhost:8080\")\n\n\nfile_dir = \"/home/adam/workstation/file_processing/test_audio\"\nfile_name = \"test_audio.mp3\"\nfilepath = os.path.join(file_dir,file_name)\nfile_type = \"audio/mp3\"\nwith open(filepath, \"rb\") as b64_file:\n    file_data = base64.b64encode(b64_file.read())\n    file_data = file_data.decode(\"ascii\")\n\nfile_obj = request_objects.file_obj(data=file_data, content_type=file_type)\ntimestamp = request_objects.timestamp_obj(start=1.12, end=2.14)\nrequest_obj = request_objects.bleep_obj(file=file_obj, timestamps=[timestamp])\n\nresp = client.bleep(request_object=request_obj)\nwith open(os.path.join(file_dir,f\"redacted-{file_name}\"), 'wb') as redacted_file:\n    processed_file = resp.bleeped_file.encode(\"ascii\")\n    processed_file = base64.b64decode(processed_file, validate=True)\n    redacted_file.write(processed_file)\n```\n\n#### Working with structured data\n\nRedacting a data frame column by column\n\n##### NOTE: When de-identifying smaller strings of structured data, more accurate results can be achieved by passing in the whole column as a string (including the header) and a delimiter. For example, making a request row by row for a column named SSN will return data identified as PHONE_NUMBER, even when the header is included\n\n```python\n# Working with data frames\nimport pandas as pd\nfrom privateai_client import PAIClient\nfrom privateai_client.objects import request_objects\n\nclient = PAIClient(url=\"http://localhost:8080\")\ndata_frame = pd.DataFrame(\n    {\n        \"Name\": [\n            \"Braund, Mr. Owen Harris\",\n            \"Allen, Mr. William Henry\",\n            \"Bonnell, Miss. Elizabeth\",\n        ],\n        \"Age\": [22, 35, 58],\n        \"Sex\": [\"male\", \"male\", \"female\"],\n    }\n)\nprint(data_frame)\ntext_req = request_objects.process_text_obj(text=[])\nfor column in data_frame.columns:\n    text_req.text.append(f\"{column}:{' | '.join([str(row) for row in data_frame[column]])}\")\n\nresp = client.process_text(text_req)\nredacted_data = dict()\nfor row in resp.processed_text:\n    data = row.split(':',1)\n    redacted_data[data[0]] = data[1].split(' | ')\nredacted_data_frame = pd.DataFrame(redacted_data)\nprint(redacted_data_frame)\n```\n\nRedacting cell by cell for columns with large text content\n\n```python\n# Working with data frames\nimport pandas as pd\nfrom privateai_client import PAIClient\nfrom privateai_client.objects import request_objects\n\nclient = PAIClient(url=\"http://localhost:8080\")\ndata_frame = pd.DataFrame(\n    {\n        \"Book\": [\n            \"Treasure Island\",\n            \"Moby Dick\",\n        ],\n        \"chapter\": [1,1],\n        \"paragraph\": [1,1],\n        \"text\": [\"The Old Sea-dog at the Admiral Benbow\\nSquire Trelawney, Dr. Livesey, and the rest of...\",\n                 \"Call me Ishmael. Some years ago\u2014never mind how long precisely\u2014having little or no money in my purse...\"\n                 ]\n    }\n)\nobj = request_objects.process_text_obj\nfunc = client.process_text\ndata_frame['text'] = [(lambda x: func(obj(text=[x])).processed_text[0])(row) for row in data_frame['text']]\n```\n\nReidentifying Text\n```python\nfrom privateai_client import PAIClient\nfrom privateai_client import request_objects\n\nclient = PAIClient(url=\"http://localhost:8080\")\n\n# Deidentify the text\ninitial_text = 'My name is John. I work for Private AI'\nrequest_obj = request_objects.process_text_obj(text=[initial_text])\nresponse_obj = client.process_text(request_obj)\n\n# Build reidentify request object from the deidentified response\nnew_request_obj = response_obj.get_reidentify_request()\n# Call the reidentify Route\nnew_response_obj = client.reidentify_text(new_request_obj)\nprint(new_response_obj.body)\n```\n\n[1]: https://docs.private-ai.com/reference/latest/operation/process_text_v3_process_text_post/\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "A thin client for communicating with the Private AI de-identication API.",
    "version": "3.9.0",
    "project_urls": {
        "Bug Tracker": "https://github.com/privateai/pai-thin-client/issues",
        "Changelog": "https://github.com/privateai/pai-thin-client/blob/main/CHANGELOG.md",
        "Contributing": "https://github.com/privateai/pai-thin-client/blob/main/CONTRIBUTING.md",
        "Homepage": "https://github.com/privateai/pai-thin-client/"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "753e9d8d02b17b0ceac51faab1486f6c8d17a66ffca033d80ef68b6ea07943e7",
                "md5": "35ffbd16772d858959baa22506952aed",
                "sha256": "36e984ef55227ee58c3d5b288bcb68ca4ab8d0cd403807d8f87e297b4d69711f"
            },
            "downloads": -1,
            "filename": "privateai_client-3.9.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "35ffbd16772d858959baa22506952aed",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.8",
            "size": 328631,
            "upload_time": "2024-08-15T19:47:48",
            "upload_time_iso_8601": "2024-08-15T19:47:48.102861Z",
            "url": "https://files.pythonhosted.org/packages/75/3e/9d8d02b17b0ceac51faab1486f6c8d17a66ffca033d80ef68b6ea07943e7/privateai_client-3.9.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "5962a32ec7a4394df37733b9d61c9cb9b6e1ce0bdb5e1b881aad3b16b7716a9c",
                "md5": "01764be24abe22359e705fe68b41292a",
                "sha256": "a7e7d6d38b4ed1f273a3fb7bfd07dd21dd4e1afe45735ee038cf51449391c4bc"
            },
            "downloads": -1,
            "filename": "privateai_client-3.9.0.tar.gz",
            "has_sig": false,
            "md5_digest": "01764be24abe22359e705fe68b41292a",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.8",
            "size": 331594,
            "upload_time": "2024-08-15T19:47:49",
            "upload_time_iso_8601": "2024-08-15T19:47:49.807177Z",
            "url": "https://files.pythonhosted.org/packages/59/62/a32ec7a4394df37733b9d61c9cb9b6e1ce0bdb5e1b881aad3b16b7716a9c/privateai_client-3.9.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-08-15 19:47:49",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "privateai",
    "github_project": "pai-thin-client",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [],
    "lcname": "privateai-client"
}
        
Elapsed time: 1.70329s