psytrack


Namepsytrack JSON
Version 2.0.0 PyPI version JSON
download
home_pagehttp://github.com/nicholas-roy/psytrack
SummaryTool for tracking dynamic psychometric curves
upload_time2020-11-22 04:28:01
maintainer
docs_urlNone
authorNicholas A. Roy, Ji Hyun Bak, and Jonathan W. Pillow
requires_python
licenseMIT
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # PsyTrack

PsyTrack is a package for fitting a dynamic psychophysical model to behavioral data as proposed in our 2018 NeurIPS paper, '[Efficient inference for time-varying behavior during learning](http://pillowlab.princeton.edu/pubs/Roy18_NeurIPS_dynamicPsychophys.pdf).'

<img src='./psytrack/examples/weights.png' alt='Figure 1b from paper' height='300'/>

[//]: # ()

## Documentation

Documentation and examples can be found in [`ExampleNotebook.ipynb`](./psytrack/examples/ExampleNotebook.ipynb)

[//]: # ()


## How to install

Just run `pip install psytrack`


## Authors

Nick Roy, [Ji Hyun Bak](http://newton.kias.re.kr/~jhbak/), and [Jonathan Pillow](http://pillowlab.princeton.edu/)


Please cite as:

Roy NA, Bak JH, Akrami A, Brody CD, & Pillow JW (2018). [Efficient inference for time-varying behavior during learning.](http://pillowlab.princeton.edu/pubs/abs_Roy_NeurIPS18.html) _Advances in Neural Information Processing Systems_ 31, 5696-5706.  (2018).


[//]: # (readme template from https://github.com/HIPS/autograd)



            

Raw data

            {
    "_id": null,
    "home_page": "http://github.com/nicholas-roy/psytrack",
    "name": "psytrack",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "",
    "author": "Nicholas A. Roy, Ji Hyun Bak, and Jonathan W. Pillow",
    "author_email": "nicholas.roy.42@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/c6/87/264be821cc37daf3b138cdb2a0729185c44d714ea9966fd7fdbbbf8c3a8a/psytrack-2.0.0.tar.gz",
    "platform": "",
    "description": "# PsyTrack\n\nPsyTrack is a package for fitting a dynamic psychophysical model to behavioral data as proposed in our 2018 NeurIPS paper, '[Efficient inference for time-varying behavior during learning](http://pillowlab.princeton.edu/pubs/Roy18_NeurIPS_dynamicPsychophys.pdf).'\n\n<img src='./psytrack/examples/weights.png' alt='Figure 1b from paper' height='300'/>\n\n[//]: # ()\n\n## Documentation\n\nDocumentation and examples can be found in [`ExampleNotebook.ipynb`](./psytrack/examples/ExampleNotebook.ipynb)\n\n[//]: # ()\n\n\n## How to install\n\nJust run `pip install psytrack`\n\n\n## Authors\n\nNick Roy, [Ji Hyun Bak](http://newton.kias.re.kr/~jhbak/), and [Jonathan Pillow](http://pillowlab.princeton.edu/)\n\n\nPlease cite as:\n\nRoy NA, Bak JH, Akrami A, Brody CD, & Pillow JW (2018). [Efficient inference for time-varying behavior during learning.](http://pillowlab.princeton.edu/pubs/abs_Roy_NeurIPS18.html) _Advances in Neural Information Processing Systems_ 31, 5696-5706.  (2018).\n\n\n[//]: # (readme template from https://github.com/HIPS/autograd)\n\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Tool for tracking dynamic psychometric curves",
    "version": "2.0.0",
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "md5": "08ef756d259c10ed509c1660f1cfd85e",
                "sha256": "54d93b0867ecd3005ed11823247f6e71602dc0b3d1972a878847798be0b2d5cc"
            },
            "downloads": -1,
            "filename": "psytrack-2.0.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "08ef756d259c10ed509c1660f1cfd85e",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 640912,
            "upload_time": "2020-11-22T04:27:56",
            "upload_time_iso_8601": "2020-11-22T04:27:56.503106Z",
            "url": "https://files.pythonhosted.org/packages/14/c8/9059123a0baeb0fe4925486fdb99b56435f83c8b0c0c923821bc4c8ea086/psytrack-2.0.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "md5": "18c858e87f3db3c06b9c5f7a70f870b6",
                "sha256": "ef8d9067ce36477a59ad2dde5fbfbfce726d2a8760c4f749391f9a78e7ef42be"
            },
            "downloads": -1,
            "filename": "psytrack-2.0.0.tar.gz",
            "has_sig": false,
            "md5_digest": "18c858e87f3db3c06b9c5f7a70f870b6",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 635777,
            "upload_time": "2020-11-22T04:28:01",
            "upload_time_iso_8601": "2020-11-22T04:28:01.590981Z",
            "url": "https://files.pythonhosted.org/packages/c6/87/264be821cc37daf3b138cdb2a0729185c44d714ea9966fd7fdbbbf8c3a8a/psytrack-2.0.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2020-11-22 04:28:01",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": null,
    "github_project": "nicholas-roy",
    "error": "Could not fetch GitHub repository",
    "lcname": "psytrack"
}
        
Elapsed time: 0.17284s