pygtc.py
=========
**What is a Giant Triangle Confusogram?**
A Giant-Triangle-Confusogram (GTC, aka triangle plot) is a way of
displaying the results of a Monte-Carlo Markov Chain (MCMC) sampling or similar
analysis. (For a discussion of MCMC analysis, see the excellent ``emcee``
package.) The recovered parameter constraints are displayed on a grid in which
the diagonal shows the one-dimensional posteriors (and, optionally, priors) and
the lower-left triangle shows the pairwise projections. You might want to look
at a plot like this if you are fitting a model to data and want to see the
parameter covariances along with the priors.
Here's an example of a GTC with some random data and arbitrary labels::
pygtc.plotGTC(chains=[samples1,samples2],
paramNames=names,
chainLabels=chainLabels,
truths=truths,
truthLabels=truthLabels,
priors=priors,
paramRanges=paramRanges,
figureSize='MNRAS_page')
.. image:: https://raw.githubusercontent.com/SebastianBocquet/pygtc/master/docs/_static/demo_files/demo_9_1.png
**But doesn't this already exist in corner.py, distUtils, etc...?**
Although several other packages exists to make such a plot, we were unsatisfied
with the amount of extra work required to massage the result into something we
were happy to publish. With ``pygtc``, we hope to take that extra legwork out of
the equation by providing a package that gives a figure that is publication
ready on the first try! You should try all the packages and use the one you like
most; for us, that is ``pygtc``!
Installation
------------
For a quick start, you can install with either ``pip`` or ``conda``. Either will install the required
dependencies for you (``packaging``, ``numpy``, and ``matplotlib``)::
$ pip install pygtc
or, if you use ``conda``::
$ conda install pygtc -c conda-forge
For more installation details, see the `documentation <http://pygtc.readthedocs.io/>`_.
Documentation
-------------
Documentation is hosted at `ReadTheDocs <http://pygtc.readthedocs.io/>`_. Find
an exhaustive set of examples there!
Citation
--------
If you use pygtc to generate plots for a publication, please cite as::
@article{Bocquet2016,
doi = {10.21105/joss.00046},
url = {http://dx.doi.org/10.21105/joss.00046},
year = {2016},
month = {oct},
publisher = {The Open Journal},
volume = {1},
number = {6},
author = {Sebastian Bocquet and Faustin W. Carter},
title = {pygtc: beautiful parameter covariance plots (aka. Giant Triangle Confusograms)},
journal = {The Journal of Open Source Software}
}
Copyright 2016, Sebastian Bocquet and Faustin W. Carter
.. image:: https://zenodo.org/badge/DOI/10.5281/zenodo.159091.svg
:target: https://doi.org/10.5281/zenodo.159091
Raw data
{
"_id": null,
"home_page": "http://github.com/sebastianbocquet/pygtc",
"name": "pyGTC",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "",
"author": "Sebastian Bocquet and Faustin Carter",
"author_email": "sebastian.bocquet@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/c1/38/e6608b22473066aa9a640affcd81cc5524f772d1b8edd34f9e1c013bd5a6/pyGTC-0.5.0.tar.gz",
"platform": null,
"description": "pygtc.py\r\n=========\r\n\r\n**What is a Giant Triangle Confusogram?**\r\n\r\nA Giant-Triangle-Confusogram (GTC, aka triangle plot) is a way of\r\ndisplaying the results of a Monte-Carlo Markov Chain (MCMC) sampling or similar\r\nanalysis. (For a discussion of MCMC analysis, see the excellent ``emcee``\r\npackage.) The recovered parameter constraints are displayed on a grid in which\r\nthe diagonal shows the one-dimensional posteriors (and, optionally, priors) and\r\nthe lower-left triangle shows the pairwise projections. You might want to look\r\nat a plot like this if you are fitting a model to data and want to see the\r\nparameter covariances along with the priors.\r\n\r\nHere's an example of a GTC with some random data and arbitrary labels::\r\n\r\n pygtc.plotGTC(chains=[samples1,samples2],\r\n paramNames=names,\r\n chainLabels=chainLabels,\r\n truths=truths,\r\n truthLabels=truthLabels,\r\n priors=priors,\r\n paramRanges=paramRanges,\r\n figureSize='MNRAS_page')\r\n\r\n.. image:: https://raw.githubusercontent.com/SebastianBocquet/pygtc/master/docs/_static/demo_files/demo_9_1.png\r\n\r\n**But doesn't this already exist in corner.py, distUtils, etc...?**\r\n\r\nAlthough several other packages exists to make such a plot, we were unsatisfied\r\nwith the amount of extra work required to massage the result into something we\r\nwere happy to publish. With ``pygtc``, we hope to take that extra legwork out of\r\nthe equation by providing a package that gives a figure that is publication\r\nready on the first try! You should try all the packages and use the one you like\r\nmost; for us, that is ``pygtc``!\r\n\r\nInstallation\r\n------------\r\nFor a quick start, you can install with either ``pip`` or ``conda``. Either will install the required\r\ndependencies for you (``packaging``, ``numpy``, and ``matplotlib``)::\r\n\r\n $ pip install pygtc\r\n\r\nor, if you use ``conda``::\r\n\r\n $ conda install pygtc -c conda-forge\r\n\r\nFor more installation details, see the `documentation <http://pygtc.readthedocs.io/>`_.\r\n\r\nDocumentation\r\n-------------\r\nDocumentation is hosted at `ReadTheDocs <http://pygtc.readthedocs.io/>`_. Find\r\nan exhaustive set of examples there!\r\n\r\nCitation\r\n--------\r\nIf you use pygtc to generate plots for a publication, please cite as::\r\n\r\n @article{Bocquet2016,\r\n doi = {10.21105/joss.00046},\r\n url = {http://dx.doi.org/10.21105/joss.00046},\r\n year = {2016},\r\n month = {oct},\r\n publisher = {The Open Journal},\r\n volume = {1},\r\n number = {6},\r\n author = {Sebastian Bocquet and Faustin W. Carter},\r\n title = {pygtc: beautiful parameter covariance plots (aka. Giant Triangle Confusograms)},\r\n journal = {The Journal of Open Source Software}\r\n }\r\n\r\n\r\nCopyright 2016, Sebastian Bocquet and Faustin W. Carter\r\n\r\n.. image:: https://zenodo.org/badge/DOI/10.5281/zenodo.159091.svg\r\n :target: https://doi.org/10.5281/zenodo.159091\r\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Make an awesome giant triangle confusogram (gtc)!",
"version": "0.5.0",
"project_urls": {
"Homepage": "http://github.com/sebastianbocquet/pygtc"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "10f64c2c19e12434be59fa1b9fae53fc9302d9430d876a868d9272821d8d4df0",
"md5": "fe95862c34cdd84e3f04b290d822d409",
"sha256": "40895a41f83cca81dc565b649bbc6ccb214fa664dc1dbdc8f0aad70844c3e79c"
},
"downloads": -1,
"filename": "pyGTC-0.5.0-py2.py3-none-any.whl",
"has_sig": false,
"md5_digest": "fe95862c34cdd84e3f04b290d822d409",
"packagetype": "bdist_wheel",
"python_version": "py2.py3",
"requires_python": null,
"size": 3164311,
"upload_time": "2023-10-12T06:38:05",
"upload_time_iso_8601": "2023-10-12T06:38:05.124702Z",
"url": "https://files.pythonhosted.org/packages/10/f6/4c2c19e12434be59fa1b9fae53fc9302d9430d876a868d9272821d8d4df0/pyGTC-0.5.0-py2.py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "c138e6608b22473066aa9a640affcd81cc5524f772d1b8edd34f9e1c013bd5a6",
"md5": "a93b0539f96cc395894148e8a4760518",
"sha256": "179dd20e99142bb2f351c64d2a5b0a4c9d5e6245c746888cd406e1c0aaf79400"
},
"downloads": -1,
"filename": "pyGTC-0.5.0.tar.gz",
"has_sig": false,
"md5_digest": "a93b0539f96cc395894148e8a4760518",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 3164001,
"upload_time": "2023-10-12T06:38:07",
"upload_time_iso_8601": "2023-10-12T06:38:07.226424Z",
"url": "https://files.pythonhosted.org/packages/c1/38/e6608b22473066aa9a640affcd81cc5524f772d1b8edd34f9e1c013bd5a6/pyGTC-0.5.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-10-12 06:38:07",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "sebastianbocquet",
"github_project": "pygtc",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [],
"lcname": "pygtc"
}