pyGTC


NamepyGTC JSON
Version 0.5.0 PyPI version JSON
download
home_pagehttp://github.com/sebastianbocquet/pygtc
SummaryMake an awesome giant triangle confusogram (gtc)!
upload_time2023-10-12 06:38:07
maintainer
docs_urlNone
authorSebastian Bocquet and Faustin Carter
requires_python
licenseMIT
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            pygtc.py
=========

**What is a Giant Triangle Confusogram?**

A Giant-Triangle-Confusogram (GTC, aka triangle plot) is a way of
displaying the results of a Monte-Carlo Markov Chain (MCMC) sampling or similar
analysis. (For a discussion of MCMC analysis, see the excellent ``emcee``
package.) The recovered parameter constraints are displayed on a grid in which
the diagonal shows the one-dimensional posteriors (and, optionally, priors) and
the lower-left triangle shows the pairwise projections. You might want to look
at a plot like this if you are fitting a model to data and want to see the
parameter covariances along with the priors.

Here's an example of a GTC with some random data and arbitrary labels::

  pygtc.plotGTC(chains=[samples1,samples2],
                paramNames=names,
                chainLabels=chainLabels,
                truths=truths,
                truthLabels=truthLabels,
                priors=priors,
                paramRanges=paramRanges,
                figureSize='MNRAS_page')

.. image:: https://raw.githubusercontent.com/SebastianBocquet/pygtc/master/docs/_static/demo_files/demo_9_1.png

**But doesn't this already exist in corner.py, distUtils, etc...?**

Although several other packages exists to make such a plot, we were unsatisfied
with the amount of extra work required to massage the result into something we
were happy to publish. With ``pygtc``, we hope to take that extra legwork out of
the equation by providing a package that gives a figure that is publication
ready on the first try! You should try all the packages and use the one you like
most; for us, that is ``pygtc``!

Installation
------------
For a quick start, you can install with either ``pip`` or ``conda``. Either will install the required
dependencies for you (``packaging``, ``numpy``, and ``matplotlib``)::

  $ pip install pygtc

or, if you use ``conda``::

  $ conda install pygtc -c conda-forge

For more installation details, see the `documentation <http://pygtc.readthedocs.io/>`_.

Documentation
-------------
Documentation is hosted at `ReadTheDocs <http://pygtc.readthedocs.io/>`_. Find
an exhaustive set of examples there!

Citation
--------
If you use pygtc to generate plots for a publication, please cite as::

  @article{Bocquet2016,
    doi = {10.21105/joss.00046},
    url = {http://dx.doi.org/10.21105/joss.00046},
    year  = {2016},
    month = {oct},
    publisher = {The Open Journal},
    volume = {1},
    number = {6},
    author = {Sebastian Bocquet and Faustin W. Carter},
    title = {pygtc: beautiful parameter covariance plots (aka. Giant Triangle Confusograms)},
    journal = {The Journal of Open Source Software}
  }


Copyright 2016, Sebastian Bocquet and Faustin W. Carter

.. image:: https://zenodo.org/badge/DOI/10.5281/zenodo.159091.svg
   :target: https://doi.org/10.5281/zenodo.159091

            

Raw data

            {
    "_id": null,
    "home_page": "http://github.com/sebastianbocquet/pygtc",
    "name": "pyGTC",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "",
    "author": "Sebastian Bocquet and Faustin Carter",
    "author_email": "sebastian.bocquet@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/c1/38/e6608b22473066aa9a640affcd81cc5524f772d1b8edd34f9e1c013bd5a6/pyGTC-0.5.0.tar.gz",
    "platform": null,
    "description": "pygtc.py\r\n=========\r\n\r\n**What is a Giant Triangle Confusogram?**\r\n\r\nA Giant-Triangle-Confusogram (GTC, aka triangle plot) is a way of\r\ndisplaying the results of a Monte-Carlo Markov Chain (MCMC) sampling or similar\r\nanalysis. (For a discussion of MCMC analysis, see the excellent ``emcee``\r\npackage.) The recovered parameter constraints are displayed on a grid in which\r\nthe diagonal shows the one-dimensional posteriors (and, optionally, priors) and\r\nthe lower-left triangle shows the pairwise projections. You might want to look\r\nat a plot like this if you are fitting a model to data and want to see the\r\nparameter covariances along with the priors.\r\n\r\nHere's an example of a GTC with some random data and arbitrary labels::\r\n\r\n  pygtc.plotGTC(chains=[samples1,samples2],\r\n                paramNames=names,\r\n                chainLabels=chainLabels,\r\n                truths=truths,\r\n                truthLabels=truthLabels,\r\n                priors=priors,\r\n                paramRanges=paramRanges,\r\n                figureSize='MNRAS_page')\r\n\r\n.. image:: https://raw.githubusercontent.com/SebastianBocquet/pygtc/master/docs/_static/demo_files/demo_9_1.png\r\n\r\n**But doesn't this already exist in corner.py, distUtils, etc...?**\r\n\r\nAlthough several other packages exists to make such a plot, we were unsatisfied\r\nwith the amount of extra work required to massage the result into something we\r\nwere happy to publish. With ``pygtc``, we hope to take that extra legwork out of\r\nthe equation by providing a package that gives a figure that is publication\r\nready on the first try! You should try all the packages and use the one you like\r\nmost; for us, that is ``pygtc``!\r\n\r\nInstallation\r\n------------\r\nFor a quick start, you can install with either ``pip`` or ``conda``. Either will install the required\r\ndependencies for you (``packaging``, ``numpy``, and ``matplotlib``)::\r\n\r\n  $ pip install pygtc\r\n\r\nor, if you use ``conda``::\r\n\r\n  $ conda install pygtc -c conda-forge\r\n\r\nFor more installation details, see the `documentation <http://pygtc.readthedocs.io/>`_.\r\n\r\nDocumentation\r\n-------------\r\nDocumentation is hosted at `ReadTheDocs <http://pygtc.readthedocs.io/>`_. Find\r\nan exhaustive set of examples there!\r\n\r\nCitation\r\n--------\r\nIf you use pygtc to generate plots for a publication, please cite as::\r\n\r\n  @article{Bocquet2016,\r\n    doi = {10.21105/joss.00046},\r\n    url = {http://dx.doi.org/10.21105/joss.00046},\r\n    year  = {2016},\r\n    month = {oct},\r\n    publisher = {The Open Journal},\r\n    volume = {1},\r\n    number = {6},\r\n    author = {Sebastian Bocquet and Faustin W. Carter},\r\n    title = {pygtc: beautiful parameter covariance plots (aka. Giant Triangle Confusograms)},\r\n    journal = {The Journal of Open Source Software}\r\n  }\r\n\r\n\r\nCopyright 2016, Sebastian Bocquet and Faustin W. Carter\r\n\r\n.. image:: https://zenodo.org/badge/DOI/10.5281/zenodo.159091.svg\r\n   :target: https://doi.org/10.5281/zenodo.159091\r\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Make an awesome giant triangle confusogram (gtc)!",
    "version": "0.5.0",
    "project_urls": {
        "Homepage": "http://github.com/sebastianbocquet/pygtc"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "10f64c2c19e12434be59fa1b9fae53fc9302d9430d876a868d9272821d8d4df0",
                "md5": "fe95862c34cdd84e3f04b290d822d409",
                "sha256": "40895a41f83cca81dc565b649bbc6ccb214fa664dc1dbdc8f0aad70844c3e79c"
            },
            "downloads": -1,
            "filename": "pyGTC-0.5.0-py2.py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "fe95862c34cdd84e3f04b290d822d409",
            "packagetype": "bdist_wheel",
            "python_version": "py2.py3",
            "requires_python": null,
            "size": 3164311,
            "upload_time": "2023-10-12T06:38:05",
            "upload_time_iso_8601": "2023-10-12T06:38:05.124702Z",
            "url": "https://files.pythonhosted.org/packages/10/f6/4c2c19e12434be59fa1b9fae53fc9302d9430d876a868d9272821d8d4df0/pyGTC-0.5.0-py2.py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "c138e6608b22473066aa9a640affcd81cc5524f772d1b8edd34f9e1c013bd5a6",
                "md5": "a93b0539f96cc395894148e8a4760518",
                "sha256": "179dd20e99142bb2f351c64d2a5b0a4c9d5e6245c746888cd406e1c0aaf79400"
            },
            "downloads": -1,
            "filename": "pyGTC-0.5.0.tar.gz",
            "has_sig": false,
            "md5_digest": "a93b0539f96cc395894148e8a4760518",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 3164001,
            "upload_time": "2023-10-12T06:38:07",
            "upload_time_iso_8601": "2023-10-12T06:38:07.226424Z",
            "url": "https://files.pythonhosted.org/packages/c1/38/e6608b22473066aa9a640affcd81cc5524f772d1b8edd34f9e1c013bd5a6/pyGTC-0.5.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-10-12 06:38:07",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "sebastianbocquet",
    "github_project": "pygtc",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [],
    "lcname": "pygtc"
}
        
Elapsed time: 0.27592s