pyVLMP


NamepyVLMP JSON
Version 1.0.71 PyPI version JSON
download
home_pagehttps://github.com/PabloIbannez/pyGrained
SummaryVirtual Lab Modeling Platform
upload_time2024-08-31 20:28:54
maintainerNone
docs_urlNone
authorNone
requires_python>=3.7
licenseGPLv3
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # VLMP (Virtual Lab Modeling Platform)

<p align="center">
    <img src="https://github.com/PabloIbannez/VLMP/blob/main/docs/_images/logo.png" width="500">
</p>

## Table of Contents

- [Introduction](#introduction)
- [Installation](#installation)
- [Getting Started](#getting-started)
- [Workflow](#workflow)
- [License](#license)
- [Contact](#contact)

## Introduction

VLMP is a Python library designed for running parallelized simulations, specifically optimized for molecular dynamics and other continuous models. Built on the backend technology of UAMMD-structured, it leverages multi-level parallelization to achieve highly efficient simulation runs.

### Features

- **Multi-level Parallelization**: Run multiple simulations concurrently on a single GPU or distribute across multiple GPUs.
- **Optimized for Coarse-grained Models**: Achieve better GPU utilization with small-scale simulations.
- **Highly Configurable**: Easily adaptable for a variety of scientific phenomena.
- **Community Sharing**: Distribute new models as VLMP modules.

## Documentation

[Online Documentation](https://vlmp.readthedocs.io/en/latest/)

## Installation

### Prerequisites

VLMP can be used without any additional program ( but required Python libraries) for generating simulations input files.
For execute these simulations UAMMD-structured must be available in the system. [UAMMD-structured Documentation](https://uammd-structured.readthedocs.io/en/latest/)

### Installing VLMP

Via pip:
```bash
pip install pyVLMP
```

Or clone the GitHub repository:

```bash
git clone https://github.com/PabloIbannez/VLMP.git
cd VLMP
pip install .
```

### Verifying Installation

```python
import VLMP
```

## Getting Started

Here's a minimal example to simulate a set of DNA chains:

```python

   import VLMP
   from VLMP.utils.units import picosecond2KcalMol_A_time
   from numpy import random

   # Convert picoseconds to AKMA time unit
   ps2AKMA = picosecond2KcalMol_A_time()

   # Number of sequences and sequence set size
   Nsequence = 10
   sequenceSetSize = 10

   # Length of each sequence and the basis of DNA
   sequenceLength  = 100
   basis = ['A', 'C', 'G', 'T']

   # Generate random sequences
   sequences = []
   for i in range(Nsequence):
       sequences.append(''.join(random.choice(basis, sequenceLength)))

   # Populate simulation pool
   simulationPool = []
   for seq in sequences:
       # Configure simulation parameters
       simulationPool.append({
           "system": [
               {"type": "simulationName", "parameters": {"simulationName": seq}},
               {"type": "backup", "parameters": {"backupIntervalStep": 100000}}
           ],
           "units": [{"type": "KcalMol_A"}],
           "types": [{"type": "basic"}],
           "ensemble": [
               {"type": "NVT", "parameters": {"box": [2000.0, 2000.0, 2000.0],
                                              "temperature": 300.0}}
           ],
           "integrators": [
               {"type": "BBK", "parameters": {"timeStep": 0.02*ps2AKMA,
                                              "frictionConstant": 0.2/ps2AKMA,
                                              "integrationSteps": 1000000}}
           ],
           "models": [
               {"type": "MADna", "parameters": {"sequence": seq}}
           ],
           "simulationSteps": [
               {"type": "saveState", "parameters": {"intervalStep": 10000,
                                                    "outputFilePath": "traj",
                                                    "outputFormat": "dcd"}},
               {"type": "thermodynamicMeasurement", "parameters": {"intervalStep": 10000,
                                                                   "outputFilePath": "thermo.dat"}},
               {"type": "info", "parameters": {"intervalStep": 10000}}
           ]
       })

   # Initialize VLMP and load simulation pool
   vlmp = VLMP.VLMP()
   vlmp.loadSimulationPool(simulationPool)

   # Distribute simulations and set up
   vlmp.distributeSimulationPool("size", sequenceSetSize)
   vlmp.setUpSimulation("EXAMPLE")
```

Execute the simulations with:

```bash
cd EXAMPLE
python -m VLMP -s VLMPsession.json --local --gpu 0 1
```

## Workflow

1. **Simulation Configuration**: Define simulation parameters.
2. **Simulation Pool Creation**: Prepare multiple configurations for batch execution.
3. **Simulation Distribution**: Distribute simulations across computational resources.
4. **Simulation Execution**: Execute simulations on GPU using UAMMD-structured.

## License

[GPLv3](./LICENSE.txt)

## Contact

For issues and contributions, please contact: [GitHub Issues](https://github.com/PabloIbannez/VLMP/issues)


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/PabloIbannez/pyGrained",
    "name": "pyVLMP",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": null,
    "keywords": null,
    "author": null,
    "author_email": "Pablo Ib\u00e1\u00f1ez-Freire <p.ibanez.fre@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/d0/45/1b98d053045cc5ea2c9b928c85d8940c153857ac9b7980339ee79ed71a44/pyvlmp-1.0.71.tar.gz",
    "platform": null,
    "description": "# VLMP (Virtual Lab Modeling Platform)\n\n<p align=\"center\">\n    <img src=\"https://github.com/PabloIbannez/VLMP/blob/main/docs/_images/logo.png\" width=\"500\">\n</p>\n\n## Table of Contents\n\n- [Introduction](#introduction)\n- [Installation](#installation)\n- [Getting Started](#getting-started)\n- [Workflow](#workflow)\n- [License](#license)\n- [Contact](#contact)\n\n## Introduction\n\nVLMP is a Python library designed for running parallelized simulations, specifically optimized for molecular dynamics and other continuous models. Built on the backend technology of UAMMD-structured, it leverages multi-level parallelization to achieve highly efficient simulation runs.\n\n### Features\n\n- **Multi-level Parallelization**: Run multiple simulations concurrently on a single GPU or distribute across multiple GPUs.\n- **Optimized for Coarse-grained Models**: Achieve better GPU utilization with small-scale simulations.\n- **Highly Configurable**: Easily adaptable for a variety of scientific phenomena.\n- **Community Sharing**: Distribute new models as VLMP modules.\n\n## Documentation\n\n[Online Documentation](https://vlmp.readthedocs.io/en/latest/)\n\n## Installation\n\n### Prerequisites\n\nVLMP can be used without any additional program ( but required Python libraries) for generating simulations input files.\nFor execute these simulations UAMMD-structured must be available in the system. [UAMMD-structured Documentation](https://uammd-structured.readthedocs.io/en/latest/)\n\n### Installing VLMP\n\nVia pip:\n```bash\npip install pyVLMP\n```\n\nOr clone the GitHub repository:\n\n```bash\ngit clone https://github.com/PabloIbannez/VLMP.git\ncd VLMP\npip install .\n```\n\n### Verifying Installation\n\n```python\nimport VLMP\n```\n\n## Getting Started\n\nHere's a minimal example to simulate a set of DNA chains:\n\n```python\n\n   import VLMP\n   from VLMP.utils.units import picosecond2KcalMol_A_time\n   from numpy import random\n\n   # Convert picoseconds to AKMA time unit\n   ps2AKMA = picosecond2KcalMol_A_time()\n\n   # Number of sequences and sequence set size\n   Nsequence = 10\n   sequenceSetSize = 10\n\n   # Length of each sequence and the basis of DNA\n   sequenceLength  = 100\n   basis = ['A', 'C', 'G', 'T']\n\n   # Generate random sequences\n   sequences = []\n   for i in range(Nsequence):\n       sequences.append(''.join(random.choice(basis, sequenceLength)))\n\n   # Populate simulation pool\n   simulationPool = []\n   for seq in sequences:\n       # Configure simulation parameters\n       simulationPool.append({\n           \"system\": [\n               {\"type\": \"simulationName\", \"parameters\": {\"simulationName\": seq}},\n               {\"type\": \"backup\", \"parameters\": {\"backupIntervalStep\": 100000}}\n           ],\n           \"units\": [{\"type\": \"KcalMol_A\"}],\n           \"types\": [{\"type\": \"basic\"}],\n           \"ensemble\": [\n               {\"type\": \"NVT\", \"parameters\": {\"box\": [2000.0, 2000.0, 2000.0],\n                                              \"temperature\": 300.0}}\n           ],\n           \"integrators\": [\n               {\"type\": \"BBK\", \"parameters\": {\"timeStep\": 0.02*ps2AKMA,\n                                              \"frictionConstant\": 0.2/ps2AKMA,\n                                              \"integrationSteps\": 1000000}}\n           ],\n           \"models\": [\n               {\"type\": \"MADna\", \"parameters\": {\"sequence\": seq}}\n           ],\n           \"simulationSteps\": [\n               {\"type\": \"saveState\", \"parameters\": {\"intervalStep\": 10000,\n                                                    \"outputFilePath\": \"traj\",\n                                                    \"outputFormat\": \"dcd\"}},\n               {\"type\": \"thermodynamicMeasurement\", \"parameters\": {\"intervalStep\": 10000,\n                                                                   \"outputFilePath\": \"thermo.dat\"}},\n               {\"type\": \"info\", \"parameters\": {\"intervalStep\": 10000}}\n           ]\n       })\n\n   # Initialize VLMP and load simulation pool\n   vlmp = VLMP.VLMP()\n   vlmp.loadSimulationPool(simulationPool)\n\n   # Distribute simulations and set up\n   vlmp.distributeSimulationPool(\"size\", sequenceSetSize)\n   vlmp.setUpSimulation(\"EXAMPLE\")\n```\n\nExecute the simulations with:\n\n```bash\ncd EXAMPLE\npython -m VLMP -s VLMPsession.json --local --gpu 0 1\n```\n\n## Workflow\n\n1. **Simulation Configuration**: Define simulation parameters.\n2. **Simulation Pool Creation**: Prepare multiple configurations for batch execution.\n3. **Simulation Distribution**: Distribute simulations across computational resources.\n4. **Simulation Execution**: Execute simulations on GPU using UAMMD-structured.\n\n## License\n\n[GPLv3](./LICENSE.txt)\n\n## Contact\n\nFor issues and contributions, please contact: [GitHub Issues](https://github.com/PabloIbannez/VLMP/issues)\n\n",
    "bugtrack_url": null,
    "license": "GPLv3",
    "summary": "Virtual Lab Modeling Platform",
    "version": "1.0.71",
    "project_urls": {
        "Homepage": "https://github.com/PabloIbannez/pyGrained"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "7a092ad1821ebfda9aac423412a47c8400ff40de001eafc405d867679fc6f783",
                "md5": "520963fc6de4ffb86e2fc2d9f10a9d04",
                "sha256": "8a425ad54e190d1a75815fbf20d262ceb8099ad9f024496ec4260c12eff460c4"
            },
            "downloads": -1,
            "filename": "pyVLMP-1.0.71-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "520963fc6de4ffb86e2fc2d9f10a9d04",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 202562,
            "upload_time": "2024-08-31T20:28:51",
            "upload_time_iso_8601": "2024-08-31T20:28:51.074880Z",
            "url": "https://files.pythonhosted.org/packages/7a/09/2ad1821ebfda9aac423412a47c8400ff40de001eafc405d867679fc6f783/pyVLMP-1.0.71-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "d0451b98d053045cc5ea2c9b928c85d8940c153857ac9b7980339ee79ed71a44",
                "md5": "3041c1d2d2e61d61ab9a2b8cccf98f36",
                "sha256": "b115018a6518b6fd94905f7dafd352cb41688f1e44bcc1edf712ebdf79879ea2"
            },
            "downloads": -1,
            "filename": "pyvlmp-1.0.71.tar.gz",
            "has_sig": false,
            "md5_digest": "3041c1d2d2e61d61ab9a2b8cccf98f36",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 133883,
            "upload_time": "2024-08-31T20:28:54",
            "upload_time_iso_8601": "2024-08-31T20:28:54.077866Z",
            "url": "https://files.pythonhosted.org/packages/d0/45/1b98d053045cc5ea2c9b928c85d8940c153857ac9b7980339ee79ed71a44/pyvlmp-1.0.71.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-08-31 20:28:54",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "PabloIbannez",
    "github_project": "pyGrained",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "pyvlmp"
}
        
Elapsed time: 0.46309s