| Name | pybayesprism JSON |
| Version |
0.1.0
JSON |
| download |
| home_page | None |
| Summary | Python implementation of BayesPrism |
| upload_time | 2024-08-01 15:40:35 |
| maintainer | None |
| docs_url | None |
| author | None |
| requires_python | >=3.8 |
| license | None |
| keywords |
|
| VCS |
 |
| bugtrack_url |
|
| requirements |
No requirements were recorded.
|
| Travis-CI |
No Travis.
|
| coveralls test coverage |
No coveralls.
|
This is a Python implementation of [BayesPrism](https://github.com/Danko-Lab/BayesPrism).
Usage
```python
import os
import pandas as pd
from pybayesprism import process_input, prism, extract
os.system("curl -L -O https://github.com/ziluwang829/pyBayesPrism/raw/main/data/data.tar.gz")
os.system("mkdir -p BP_data")
os.system("tar -xzvf data.tar.gz -C BP_data")
bk_dat = pd.read_csv("BP_data/bk_dat.csv", sep=",", index_col=0)
sc_dat = pd.read_csv("BP_data/sc_dat.csv", sep=",", index_col=0)
cell_state_labels = pd.read_csv("BP_data/cell_state_labels.csv", header=None).iloc[:,0].tolist()
cell_type_labels = pd.read_csv("BP_data/cell_type_labels.csv", header=None).iloc[:,0].tolist()
sc_dat_filtered = process_input.cleanup_genes(sc_dat, "count.matrix", "hs", \
["Rb", "Mrp", "other_Rb", "chrM", "MALAT1", "chrX", "chrY"], 5)
sc_dat_filtered_pc = process_input.select_gene_type(sc_dat_filtered, ["protein_coding"])
my_prism = prism.Prism.new(reference = sc_dat_filtered_pc,
mixture = bk_dat, input_type = "count.matrix",
cell_type_labels = cell_type_labels,
cell_state_labels = cell_state_labels,
key = "tumor",
outlier_cut = 0.01,
outlier_fraction = 0.1)
bp_res = my_prism.run(n_cores = 36, update_gibbs = True)
theta = extract.get_fraction(bp_res, "final", "type")
```
Raw data
{
"_id": null,
"home_page": null,
"name": "pybayesprism",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": null,
"author": null,
"author_email": "Zilu Wang <zw427@cornell.edu>",
"download_url": "https://files.pythonhosted.org/packages/3a/20/339f9b912ecf6fb8a5ef10cedfa245f07939d29eeaf3195bff69c4874450/pybayesprism-0.1.0.tar.gz",
"platform": null,
"description": "This is a Python implementation of [BayesPrism](https://github.com/Danko-Lab/BayesPrism).\n\n\nUsage\n```python\n\nimport os\nimport pandas as pd\nfrom pybayesprism import process_input, prism, extract\n\nos.system(\"curl -L -O https://github.com/ziluwang829/pyBayesPrism/raw/main/data/data.tar.gz\")\nos.system(\"mkdir -p BP_data\")\nos.system(\"tar -xzvf data.tar.gz -C BP_data\")\n\nbk_dat = pd.read_csv(\"BP_data/bk_dat.csv\", sep=\",\", index_col=0)\nsc_dat = pd.read_csv(\"BP_data/sc_dat.csv\", sep=\",\", index_col=0)\n\n\ncell_state_labels = pd.read_csv(\"BP_data/cell_state_labels.csv\", header=None).iloc[:,0].tolist()\n\ncell_type_labels = pd.read_csv(\"BP_data/cell_type_labels.csv\", header=None).iloc[:,0].tolist()\n\nsc_dat_filtered = process_input.cleanup_genes(sc_dat, \"count.matrix\", \"hs\", \\\n [\"Rb\", \"Mrp\", \"other_Rb\", \"chrM\", \"MALAT1\", \"chrX\", \"chrY\"], 5)\n \nsc_dat_filtered_pc = process_input.select_gene_type(sc_dat_filtered, [\"protein_coding\"])\n\nmy_prism = prism.Prism.new(reference = sc_dat_filtered_pc, \n mixture = bk_dat, input_type = \"count.matrix\", \n cell_type_labels = cell_type_labels, \n cell_state_labels = cell_state_labels, \n key = \"tumor\", \n outlier_cut = 0.01, \n outlier_fraction = 0.1)\n\nbp_res = my_prism.run(n_cores = 36, update_gibbs = True) \n\ntheta = extract.get_fraction(bp_res, \"final\", \"type\")\n```\n",
"bugtrack_url": null,
"license": null,
"summary": "Python implementation of BayesPrism",
"version": "0.1.0",
"project_urls": {
"Homepage": "https://github.com/ziluwang829/pyBayesPrism",
"Issues": "https://github.com/ziluwang829/pyBayesPrism/issues"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "a4fd3735bc5bf8c1db77cb0954f1c281b42a50e01e20f2315c97cdd3d0ff78a0",
"md5": "3c8f62865e31895af98f621787ee3f14",
"sha256": "90f167259b563c9a1f48fdb6a766f7dc7d287bde8062acb461733745d5aaa99a"
},
"downloads": -1,
"filename": "pybayesprism-0.1.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "3c8f62865e31895af98f621787ee3f14",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 1533389,
"upload_time": "2024-08-01T15:40:34",
"upload_time_iso_8601": "2024-08-01T15:40:34.506510Z",
"url": "https://files.pythonhosted.org/packages/a4/fd/3735bc5bf8c1db77cb0954f1c281b42a50e01e20f2315c97cdd3d0ff78a0/pybayesprism-0.1.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "3a20339f9b912ecf6fb8a5ef10cedfa245f07939d29eeaf3195bff69c4874450",
"md5": "cb83b94f8ce5da39b3176658b0640207",
"sha256": "7ce59a07eb0f5edcd9b840a311886c654e369fa1e62f0ee1569388fdbc91bc3e"
},
"downloads": -1,
"filename": "pybayesprism-0.1.0.tar.gz",
"has_sig": false,
"md5_digest": "cb83b94f8ce5da39b3176658b0640207",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 1526955,
"upload_time": "2024-08-01T15:40:35",
"upload_time_iso_8601": "2024-08-01T15:40:35.937696Z",
"url": "https://files.pythonhosted.org/packages/3a/20/339f9b912ecf6fb8a5ef10cedfa245f07939d29eeaf3195bff69c4874450/pybayesprism-0.1.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-08-01 15:40:35",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "ziluwang829",
"github_project": "pyBayesPrism",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "pybayesprism"
}