pycre


Namepycre JSON
Version 0.0.1 PyPI version JSON
download
home_pagehttps://github.com/NSAPH-Software/pycre
SummaryPython implementation of Causal Rule Ensemble
upload_time2023-08-13 21:56:57
maintainerNaeem Khoshnevis
docs_urlNone
author('Riccardo Cadei', 'Naeem Khoshnevis', 'Falco Joannes Bargagli Stoffi')
requires_python>=3.7
licenseGPLv3
keywords
VCS
bugtrack_url
requirements pandas numpy scikit-learn statsmodels econml seaborn matplotlib
Travis-CI No Travis.
coveralls test coverage No coveralls.
            Provides a new method for interpretable 
        heterogeneous treatment effects characterization in terms of 
        decision rules via an extensive exploration of heterogeneity 
        patterns by an ensemble-of-trees approach, enforcing high 
        stability in the discovery. It relies on a two-stage 
        pseudo-outcome regression, and theoretical convergence 
        guarantees support it. Bargagli-Stoffi, F. J., Cadei, R., 
        Lee, K., & Dominici, F. (2023) Causal rule ensemble: 
        Interpretable Discovery and Inference of Heterogeneous 
        Treatment Effects. arXiv preprint <arXiv:2009.09036>.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/NSAPH-Software/pycre",
    "name": "pycre",
    "maintainer": "Naeem Khoshnevis",
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": "nkhoshnevis@g.harvard.edu",
    "keywords": "",
    "author": "('Riccardo Cadei', 'Naeem Khoshnevis', 'Falco Joannes Bargagli Stoffi')",
    "author_email": "rcadei@hsph.harvard.edu,nkhoshnevis@g.harvard.edu,fbargaglistoffi@hsph.harvard.edu",
    "download_url": "https://files.pythonhosted.org/packages/1c/ed/8b5b01bda73bf344076d175a1f8b76d3fdd7b5836da5922d6e7c1cc823d0/pycre-0.0.1.tar.gz",
    "platform": null,
    "description": "Provides a new method for interpretable \n        heterogeneous treatment effects characterization in terms of \n        decision rules via an extensive exploration of heterogeneity \n        patterns by an ensemble-of-trees approach, enforcing high \n        stability in the discovery. It relies on a two-stage \n        pseudo-outcome regression, and theoretical convergence \n        guarantees support it. Bargagli-Stoffi, F. J., Cadei, R., \n        Lee, K., & Dominici, F. (2023) Causal rule ensemble: \n        Interpretable Discovery and Inference of Heterogeneous \n        Treatment Effects. arXiv preprint <arXiv:2009.09036>.\n",
    "bugtrack_url": null,
    "license": "GPLv3",
    "summary": "Python implementation of Causal Rule Ensemble",
    "version": "0.0.1",
    "project_urls": {
        "Homepage": "https://github.com/NSAPH-Software/pycre"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "1ced8b5b01bda73bf344076d175a1f8b76d3fdd7b5836da5922d6e7c1cc823d0",
                "md5": "eb144e1beea9fa8bcfe5c62c5d26457d",
                "sha256": "0978703d519a62dfa7af256640288cce4895ff1e664b23bb24176f52cc3edfa3"
            },
            "downloads": -1,
            "filename": "pycre-0.0.1.tar.gz",
            "has_sig": false,
            "md5_digest": "eb144e1beea9fa8bcfe5c62c5d26457d",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 15015,
            "upload_time": "2023-08-13T21:56:57",
            "upload_time_iso_8601": "2023-08-13T21:56:57.245196Z",
            "url": "https://files.pythonhosted.org/packages/1c/ed/8b5b01bda73bf344076d175a1f8b76d3fdd7b5836da5922d6e7c1cc823d0/pycre-0.0.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-08-13 21:56:57",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "NSAPH-Software",
    "github_project": "pycre",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [
        {
            "name": "pandas",
            "specs": []
        },
        {
            "name": "numpy",
            "specs": []
        },
        {
            "name": "scikit-learn",
            "specs": []
        },
        {
            "name": "statsmodels",
            "specs": []
        },
        {
            "name": "econml",
            "specs": []
        },
        {
            "name": "seaborn",
            "specs": []
        },
        {
            "name": "matplotlib",
            "specs": []
        }
    ],
    "lcname": "pycre"
}
        
Elapsed time: 0.21020s