Provides a new method for interpretable
heterogeneous treatment effects characterization in terms of
decision rules via an extensive exploration of heterogeneity
patterns by an ensemble-of-trees approach, enforcing high
stability in the discovery. It relies on a two-stage
pseudo-outcome regression, and theoretical convergence
guarantees support it. Bargagli-Stoffi, F. J., Cadei, R.,
Lee, K., & Dominici, F. (2023) Causal rule ensemble:
Interpretable Discovery and Inference of Heterogeneous
Treatment Effects. arXiv preprint <arXiv:2009.09036>.
Raw data
{
"_id": null,
"home_page": "https://github.com/NSAPH-Software/pycre",
"name": "pycre",
"maintainer": "Naeem Khoshnevis",
"docs_url": null,
"requires_python": ">=3.7",
"maintainer_email": "nkhoshnevis@g.harvard.edu",
"keywords": "",
"author": "('Riccardo Cadei', 'Naeem Khoshnevis', 'Falco Joannes Bargagli Stoffi')",
"author_email": "rcadei@hsph.harvard.edu,nkhoshnevis@g.harvard.edu,fbargaglistoffi@hsph.harvard.edu",
"download_url": "https://files.pythonhosted.org/packages/1c/ed/8b5b01bda73bf344076d175a1f8b76d3fdd7b5836da5922d6e7c1cc823d0/pycre-0.0.1.tar.gz",
"platform": null,
"description": "Provides a new method for interpretable \n heterogeneous treatment effects characterization in terms of \n decision rules via an extensive exploration of heterogeneity \n patterns by an ensemble-of-trees approach, enforcing high \n stability in the discovery. It relies on a two-stage \n pseudo-outcome regression, and theoretical convergence \n guarantees support it. Bargagli-Stoffi, F. J., Cadei, R., \n Lee, K., & Dominici, F. (2023) Causal rule ensemble: \n Interpretable Discovery and Inference of Heterogeneous \n Treatment Effects. arXiv preprint <arXiv:2009.09036>.\n",
"bugtrack_url": null,
"license": "GPLv3",
"summary": "Python implementation of Causal Rule Ensemble",
"version": "0.0.1",
"project_urls": {
"Homepage": "https://github.com/NSAPH-Software/pycre"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "1ced8b5b01bda73bf344076d175a1f8b76d3fdd7b5836da5922d6e7c1cc823d0",
"md5": "eb144e1beea9fa8bcfe5c62c5d26457d",
"sha256": "0978703d519a62dfa7af256640288cce4895ff1e664b23bb24176f52cc3edfa3"
},
"downloads": -1,
"filename": "pycre-0.0.1.tar.gz",
"has_sig": false,
"md5_digest": "eb144e1beea9fa8bcfe5c62c5d26457d",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.7",
"size": 15015,
"upload_time": "2023-08-13T21:56:57",
"upload_time_iso_8601": "2023-08-13T21:56:57.245196Z",
"url": "https://files.pythonhosted.org/packages/1c/ed/8b5b01bda73bf344076d175a1f8b76d3fdd7b5836da5922d6e7c1cc823d0/pycre-0.0.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-08-13 21:56:57",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "NSAPH-Software",
"github_project": "pycre",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"requirements": [
{
"name": "pandas",
"specs": []
},
{
"name": "numpy",
"specs": []
},
{
"name": "scikit-learn",
"specs": []
},
{
"name": "statsmodels",
"specs": []
},
{
"name": "econml",
"specs": []
},
{
"name": "seaborn",
"specs": []
},
{
"name": "matplotlib",
"specs": []
}
],
"lcname": "pycre"
}