pyGPSeq v2.1.2
=======================
A Python package that provides tools to analyze images of GPSeq samples.
Sample scripts are available showing the code for single/batch runs.
Read the [documentation](https://github.com/ggirelli/gpseq-img-py/wiki) for more details.
Installation
-------------
To **install**, run the following:
```
git clone http://github.com/ggirelli/gpseq-img-py
cd gpseq-img-py
sudo -H pip3 install .
```
To **uninstall** run the following from within the repository folder:
```
sudo -H pip3 uninstall pygpseq
```
To **update**, first uninstall, and then run the following from within the repository folder.
```
git pull
sudo -H pip3 install .
```
Usage
----------
#### Analyze a GPSeq image dataset
The `gpseq_anim` (**GPSeq** **an**alysis of **im**ages) analyzes a multi-condition GPSeq image dataset. Run `gpseq_anim -h` for more details.
#### Calculate lamin distance of FISH signals
The `gpseq_fromfish` script characterizes FISH signals identified with `DOTTER` (or similar tools) by calculating: absolute/normalized distance from lamina and central region, nuclear compartment, allele status,... Run `gpseq_fromfish -h` for more details.
#### Merge multiple FISH analyses using a metadata table
Use the `gpseq_fromfish_merge` script to merge multiple FISH analysis output (generated with `gpseq_fromfish`). For more details run `gpseq_fromfish_merge -h`.
#### Perform automatic 3D nuclei segmentation
Run `tiff_auto3dseg -h` for more details on how to produce binary/labeled (compressed) masks of your nuclei staining channels
#### Identify out of focus (OOF) fields of view
Run `tiff_findoof -h` for more details on how to quickly identify out of focus fields of view. Also, the `tiff_plotoof` script (in R, requires `argparser` and `ggplot2`) can be used to produce an informative plot with the signal location over the Z stack.
#### Split a tiff in smaller images
To split a large tiff to smaller square images of size N x N pixels, run `tiff_split input_image output_folder N`. Use the `--enlarge` option to avoid pixel loss. If the input image is a 3D stack, then the output images will be of N x N x N voxels, use the `--2d` to apply the split only to the first slice of the stack. For more details, run `tiff_split -h`.
#### (Un)compress a tiff
To uncompress a set of tiff, use the `tiffcu -u` command. To compress them use the `tiffcu -c` command instead. Use `tiffcu -h` for more details.
#### Convert a nd2 file into single-channel tiff images
Use the `nd2_to_tiff` tool to convert images bundled into a nd2 file into separate single-channel tiff images. Use `nd2_to_tiff -h` for the documentation.
License
---
```
MIT License
Copyright (c) 2017 Gabriele Girelli
```
Raw data
{
"_id": null,
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"cheesecake_code_kwalitee_id": null,
"keywords": "microscopy image analysis bioimaging biology cell DNA",
"upload_time": "2018-04-10 08:35:35",
"author": "Gabriele Girelli",
"home_page": "https://github.com/ggirelli/gpseq-img-py",
"github_user": "ggirelli",
"download_url": "https://pypi.python.org/packages/6e/b4/9dac2d4128efc604eeb928661f154de64f21fb6a89e25fabc8f484613a4f/pygpseq-2.1.2.tar.gz",
"platform": "",
"version": "2.1.2",
"cheesecake_documentation_id": null,
"description": "pyGPSeq v2.1.2\n=======================\n\nA Python package that provides tools to analyze images of GPSeq samples.\n\nSample scripts are available showing the code for single/batch runs.\n\nRead the [documentation](https://github.com/ggirelli/gpseq-img-py/wiki) for more details.\n\nInstallation\n-------------\n\nTo **install**, run the following:\n\n```\ngit clone http://github.com/ggirelli/gpseq-img-py\ncd gpseq-img-py\nsudo -H pip3 install .\n```\n\nTo **uninstall** run the following from within the repository folder:\n\n```\nsudo -H pip3 uninstall pygpseq\n```\n\nTo **update**, first uninstall, and then run the following from within the repository folder.\n\n```\ngit pull\nsudo -H pip3 install .\n```\n\nUsage\n----------\n\n#### Analyze a GPSeq image dataset\n\nThe `gpseq_anim` (**GPSeq** **an**alysis of **im**ages) analyzes a multi-condition GPSeq image dataset. Run `gpseq_anim -h` for more details.\n\n#### Calculate lamin distance of FISH signals\n\nThe `gpseq_fromfish` script characterizes FISH signals identified with `DOTTER` (or similar tools) by calculating: absolute/normalized distance from lamina and central region, nuclear compartment, allele status,... Run `gpseq_fromfish -h` for more details.\n\n#### Merge multiple FISH analyses using a metadata table\n\nUse the `gpseq_fromfish_merge` script to merge multiple FISH analysis output (generated with `gpseq_fromfish`). For more details run `gpseq_fromfish_merge -h`.\n\n#### Perform automatic 3D nuclei segmentation\n\nRun `tiff_auto3dseg -h` for more details on how to produce binary/labeled (compressed) masks of your nuclei staining channels\n\n#### Identify out of focus (OOF) fields of view\n\nRun `tiff_findoof -h` for more details on how to quickly identify out of focus fields of view. Also, the `tiff_plotoof` script (in R, requires `argparser` and `ggplot2`) can be used to produce an informative plot with the signal location over the Z stack.\n\n#### Split a tiff in smaller images\n\nTo split a large tiff to smaller square images of size N x N pixels, run `tiff_split input_image output_folder N`. Use the `--enlarge` option to avoid pixel loss. If the input image is a 3D stack, then the output images will be of N x N x N voxels, use the `--2d` to apply the split only to the first slice of the stack. For more details, run `tiff_split -h`.\n\n#### (Un)compress a tiff\n\nTo uncompress a set of tiff, use the `tiffcu -u` command. To compress them use the `tiffcu -c` command instead. Use `tiffcu -h` for more details.\n\n#### Convert a nd2 file into single-channel tiff images\n\nUse the `nd2_to_tiff` tool to convert images bundled into a nd2 file into separate single-channel tiff images. Use `nd2_to_tiff -h` for the documentation.\n\nLicense\n---\n\n```\nMIT License\nCopyright (c) 2017 Gabriele Girelli\n```",
"lcname": "pygpseq",
"name": "pygpseq",
"github": true,
"coveralls": false,
"bugtrack_url": null,
"license": "MIT",
"travis_ci": false,
"github_project": "gpseq-img-py",
"summary": "A GPSeq image analysis package",
"split_keywords": [
"microscopy",
"image",
"analysis",
"bioimaging",
"biology",
"cell",
"dna"
],
"author_email": "gabriele.girelli@scilifelab.se",
"urls": [
{
"has_sig": false,
"upload_time": "2018-04-10T08:35:35",
"comment_text": "",
"python_version": "source",
"url": "https://pypi.python.org/packages/6e/b4/9dac2d4128efc604eeb928661f154de64f21fb6a89e25fabc8f484613a4f/pygpseq-2.1.2.tar.gz",
"md5_digest": "36ed53809eb103461102f2dec85d563b",
"downloads": 0,
"filename": "pygpseq-2.1.2.tar.gz",
"packagetype": "sdist",
"path": "6e/b4/9dac2d4128efc604eeb928661f154de64f21fb6a89e25fabc8f484613a4f/pygpseq-2.1.2.tar.gz",
"digests": {
"sha256": "bdcd600fe36f27a49d350b53579c48a2098cfe0f59bc8801be876fe94d28db7c",
"md5": "36ed53809eb103461102f2dec85d563b"
},
"sha256_digest": "bdcd600fe36f27a49d350b53579c48a2098cfe0f59bc8801be876fe94d28db7c",
"size": 64479
}
],
"cheesecake_installability_id": null
}