# pyolaf - A Python-based 3D reconstruction framework for light field microscopy
pyolaf is a Python port of the [oLaF](https://gitlab.lrz.de/IP/olaf/) 3D reconstruction framework for light field microscopy (LFM).
## Overview
The light field microscope (LFM) allows for 3D imaging of fluorescent specimens using an array of micro-lenses (MLA) that capture both spatial and directional light field information in a single shot. oLaF is a Matlab framework for 3D reconstruction of LFM data with a deconvolution algorithm that reduces aliasing artifacts.
pyolaf brings these same features to the Python ecosystem, using GPU acceleration and some further code optimizations to **speed up deconvolution by 20x**.
## Limitations
pyolaf only supports regular grids and single-focus conventional light-field microscopes.
In particular Fourier LFM, hexagonal grids, and multi-focus lenslets are currently not supported.
Pull requests to add these are welcome!
## Copyright
Copyright (c) 2017-2020 Anca Stefanoiu, Josue Page, and Tobias Lasser -- original oLaF code
Copyright (c) 2023 Lili Karashchuk -- pyolaf
## Citation
When using pyolaf in academic publications, please reference the following citation:
- A. Stefanoiu et. al., "Artifact-free deconvolution in light field microscopy", Opt. Express, 27(22):31644, (2019).
Raw data
{
"_id": null,
"home_page": "https://github.com/lambdaloop/pyolaf",
"name": "pyolaf",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "",
"author": "Lili Karashchuk",
"author_email": "krchtchk@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/5d/44/abbba99e4d36939af809acc025e9532ef232d425a871f241c6b5172a8ba8/pyolaf-0.2.1.tar.gz",
"platform": null,
"description": "# pyolaf - A Python-based 3D reconstruction framework for light field microscopy\n\npyolaf is a Python port of the [oLaF](https://gitlab.lrz.de/IP/olaf/) 3D reconstruction framework for light field microscopy (LFM). \n\n## Overview\n \nThe light field microscope (LFM) allows for 3D imaging of fluorescent specimens using an array of micro-lenses (MLA) that capture both spatial and directional light field information in a single shot. oLaF is a Matlab framework for 3D reconstruction of LFM data with a deconvolution algorithm that reduces aliasing artifacts.\n\npyolaf brings these same features to the Python ecosystem, using GPU acceleration and some further code optimizations to **speed up deconvolution by 20x**. \n\n## Limitations\n\npyolaf only supports regular grids and single-focus conventional light-field microscopes.\nIn particular Fourier LFM, hexagonal grids, and multi-focus lenslets are currently not supported.\nPull requests to add these are welcome!\n\n## Copyright\n\nCopyright (c) 2017-2020 Anca Stefanoiu, Josue Page, and Tobias Lasser -- original oLaF code \nCopyright (c) 2023 Lili Karashchuk -- pyolaf\n\n## Citation\n\nWhen using pyolaf in academic publications, please reference the following citation:\n\n- A. Stefanoiu et. al., \"Artifact-free deconvolution in light field microscopy\", Opt. Express, 27(22):31644, (2019).\n\n",
"bugtrack_url": null,
"license": "",
"summary": "3D reconstruction framework for light field microscopy",
"version": "0.2.1",
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "d49dfc9c3fa623de6608a60c154bcbe6ca16e2f9a5adf7b1c6107d0684ba0b4f",
"md5": "c8f3b1cc73a2d0e819d1227f80c96748",
"sha256": "45202f2acdc9b2a1b83f4bdb84682b7179eb9e37a6f7d93faf07b7fed7eb8a7b"
},
"downloads": -1,
"filename": "pyolaf-0.2.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "c8f3b1cc73a2d0e819d1227f80c96748",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 29077,
"upload_time": "2023-04-15T22:48:20",
"upload_time_iso_8601": "2023-04-15T22:48:20.402719Z",
"url": "https://files.pythonhosted.org/packages/d4/9d/fc9c3fa623de6608a60c154bcbe6ca16e2f9a5adf7b1c6107d0684ba0b4f/pyolaf-0.2.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "5d44abbba99e4d36939af809acc025e9532ef232d425a871f241c6b5172a8ba8",
"md5": "89d87af53c0bce3f18f10324c88a43e4",
"sha256": "6554a4542d6a9b9d6db3b8ea88e2e52cbf09bf3ebbaabe0ad2c0eac3e5d43b5d"
},
"downloads": -1,
"filename": "pyolaf-0.2.1.tar.gz",
"has_sig": false,
"md5_digest": "89d87af53c0bce3f18f10324c88a43e4",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 27871,
"upload_time": "2023-04-15T22:48:22",
"upload_time_iso_8601": "2023-04-15T22:48:22.390285Z",
"url": "https://files.pythonhosted.org/packages/5d/44/abbba99e4d36939af809acc025e9532ef232d425a871f241c6b5172a8ba8/pyolaf-0.2.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-04-15 22:48:22",
"github": true,
"gitlab": false,
"bitbucket": false,
"github_user": "lambdaloop",
"github_project": "pyolaf",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "pyolaf"
}