pyolaf


Namepyolaf JSON
Version 0.2.1 PyPI version JSON
download
home_pagehttps://github.com/lambdaloop/pyolaf
Summary3D reconstruction framework for light field microscopy
upload_time2023-04-15 22:48:22
maintainer
docs_urlNone
authorLili Karashchuk
requires_python
license
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # pyolaf - A Python-based 3D reconstruction framework for light field microscopy

pyolaf is a Python port of the [oLaF](https://gitlab.lrz.de/IP/olaf/) 3D reconstruction framework for light field microscopy (LFM). 

## Overview
  
The light field microscope (LFM) allows for 3D imaging of fluorescent specimens using an array of micro-lenses (MLA) that capture both spatial and directional light field information in a single shot. oLaF is a Matlab framework for 3D reconstruction of LFM data with a deconvolution algorithm that reduces aliasing artifacts.

pyolaf brings these same features to the Python ecosystem, using GPU acceleration and some further code optimizations to **speed up deconvolution by 20x**. 

## Limitations

pyolaf only supports regular grids and single-focus conventional light-field microscopes.
In particular Fourier LFM, hexagonal grids, and multi-focus lenslets are currently not supported.
Pull requests to add these are welcome!

## Copyright

Copyright (c) 2017-2020 Anca Stefanoiu, Josue Page, and Tobias Lasser -- original oLaF code  
Copyright (c) 2023 Lili Karashchuk -- pyolaf

## Citation

When using pyolaf in academic publications, please reference the following citation:

- A. Stefanoiu et. al., "Artifact-free deconvolution in light field microscopy", Opt. Express, 27(22):31644, (2019).


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/lambdaloop/pyolaf",
    "name": "pyolaf",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "",
    "author": "Lili Karashchuk",
    "author_email": "krchtchk@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/5d/44/abbba99e4d36939af809acc025e9532ef232d425a871f241c6b5172a8ba8/pyolaf-0.2.1.tar.gz",
    "platform": null,
    "description": "# pyolaf - A Python-based 3D reconstruction framework for light field microscopy\n\npyolaf is a Python port of the [oLaF](https://gitlab.lrz.de/IP/olaf/) 3D reconstruction framework for light field microscopy (LFM). \n\n## Overview\n  \nThe light field microscope (LFM) allows for 3D imaging of fluorescent specimens using an array of micro-lenses (MLA) that capture both spatial and directional light field information in a single shot. oLaF is a Matlab framework for 3D reconstruction of LFM data with a deconvolution algorithm that reduces aliasing artifacts.\n\npyolaf brings these same features to the Python ecosystem, using GPU acceleration and some further code optimizations to **speed up deconvolution by 20x**. \n\n## Limitations\n\npyolaf only supports regular grids and single-focus conventional light-field microscopes.\nIn particular Fourier LFM, hexagonal grids, and multi-focus lenslets are currently not supported.\nPull requests to add these are welcome!\n\n## Copyright\n\nCopyright (c) 2017-2020 Anca Stefanoiu, Josue Page, and Tobias Lasser -- original oLaF code  \nCopyright (c) 2023 Lili Karashchuk -- pyolaf\n\n## Citation\n\nWhen using pyolaf in academic publications, please reference the following citation:\n\n- A. Stefanoiu et. al., \"Artifact-free deconvolution in light field microscopy\", Opt. Express, 27(22):31644, (2019).\n\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "3D reconstruction framework for light field microscopy",
    "version": "0.2.1",
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "d49dfc9c3fa623de6608a60c154bcbe6ca16e2f9a5adf7b1c6107d0684ba0b4f",
                "md5": "c8f3b1cc73a2d0e819d1227f80c96748",
                "sha256": "45202f2acdc9b2a1b83f4bdb84682b7179eb9e37a6f7d93faf07b7fed7eb8a7b"
            },
            "downloads": -1,
            "filename": "pyolaf-0.2.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "c8f3b1cc73a2d0e819d1227f80c96748",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 29077,
            "upload_time": "2023-04-15T22:48:20",
            "upload_time_iso_8601": "2023-04-15T22:48:20.402719Z",
            "url": "https://files.pythonhosted.org/packages/d4/9d/fc9c3fa623de6608a60c154bcbe6ca16e2f9a5adf7b1c6107d0684ba0b4f/pyolaf-0.2.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "5d44abbba99e4d36939af809acc025e9532ef232d425a871f241c6b5172a8ba8",
                "md5": "89d87af53c0bce3f18f10324c88a43e4",
                "sha256": "6554a4542d6a9b9d6db3b8ea88e2e52cbf09bf3ebbaabe0ad2c0eac3e5d43b5d"
            },
            "downloads": -1,
            "filename": "pyolaf-0.2.1.tar.gz",
            "has_sig": false,
            "md5_digest": "89d87af53c0bce3f18f10324c88a43e4",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 27871,
            "upload_time": "2023-04-15T22:48:22",
            "upload_time_iso_8601": "2023-04-15T22:48:22.390285Z",
            "url": "https://files.pythonhosted.org/packages/5d/44/abbba99e4d36939af809acc025e9532ef232d425a871f241c6b5172a8ba8/pyolaf-0.2.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-04-15 22:48:22",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "lambdaloop",
    "github_project": "pyolaf",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "pyolaf"
}
        
Elapsed time: 0.12737s