pytempscsp


Namepytempscsp JSON
Version 0.9.4 PyPI version JSON
download
home_pagehttps://github.com/tonylindeberg/pytempscsp
SummaryTemporal Scale-Space Toolbox for Python.
upload_time2024-03-16 12:52:01
maintainer
docs_urlNone
authorTony Lindeberg
requires_python>=3.7,<4.0
licenseMIT
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # pytempscsp : Temporal Scale Space Toolbox for Python

For performing temporal smoothing with the time-causal limit kernel and
for computing discrete temporal derivative approximations by applying
temporal difference operators to the smoothed data.

This code is the result of porting a subset of the routines in the Matlab
package tempscsp to Python, however, with different interfaces for the functions.

For examples of how to apply these functions for smoothing temporal signals
to different temporal scales in a fully time-causal manner, please see the
enclosed Jupyter notebook [tempscspdemo.ipynb](https://github.com/tonylindeberg/pytempscsp/blob/main/tempscspdemo.ipynb).

For more technical descriptions about the respective functions, please see
the documentation strings for the respective functions in the source code
in [tempscsp.py](https://github.com/tonylindeberg/pytempscsp/blob/main/pytempscsp/tempscsp.py).

## Installation

This package is available 
through pip and can installed by

```bash
pip install pytempscsp
```

This package can also be downloaded directly from GitHub:

```bash
git clone git@github.com:tonylindeberg/pytempscsp.git
```

## References

Lindeberg (2023) "A time-causal and time-recursive temporal scale-space representation
of temporal signals and past time", Biological Cybernetics 117 (1-2): 21-59.
([Open Access](http://dx.doi.org/10.1007/s00422-022-00953-6))

Lindeberg (2016) "Time-causal and time-recursive spatio-temporal receptive fields",
Journal of Mathematical Imaging and Vision 55(1): 50-88.
([Open Access](https://doi.org/10.1007/s10851-015-0613-9))

The time-causal limit kernel was first defined in Lindeberg (2016), however,
then also in combination with a spatial domain, and experimentally tested on
video data. The later overview paper (Lindeberg 2023) gives a dedicated treatment
for a purely temporal domain, and also with relations to Koenderink's scale-time
kernels and the ex-Gaussian kernel.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/tonylindeberg/pytempscsp",
    "name": "pytempscsp",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.7,<4.0",
    "maintainer_email": "",
    "keywords": "",
    "author": "Tony Lindeberg",
    "author_email": "tony@kth.se",
    "download_url": "https://files.pythonhosted.org/packages/53/f6/7924cb65f2a48cedcf2ec2fcba739d45809b5c83088773c596b516eb6cd9/pytempscsp-0.9.4.tar.gz",
    "platform": null,
    "description": "# pytempscsp : Temporal Scale Space Toolbox for Python\n\nFor performing temporal smoothing with the time-causal limit kernel and\nfor computing discrete temporal derivative approximations by applying\ntemporal difference operators to the smoothed data.\n\nThis code is the result of porting a subset of the routines in the Matlab\npackage tempscsp to Python, however, with different interfaces for the functions.\n\nFor examples of how to apply these functions for smoothing temporal signals\nto different temporal scales in a fully time-causal manner, please see the\nenclosed Jupyter notebook [tempscspdemo.ipynb](https://github.com/tonylindeberg/pytempscsp/blob/main/tempscspdemo.ipynb).\n\nFor more technical descriptions about the respective functions, please see\nthe documentation strings for the respective functions in the source code\nin [tempscsp.py](https://github.com/tonylindeberg/pytempscsp/blob/main/pytempscsp/tempscsp.py).\n\n## Installation\n\nThis package is available \nthrough pip and can installed by\n\n```bash\npip install pytempscsp\n```\n\nThis package can also be downloaded directly from GitHub:\n\n```bash\ngit clone git@github.com:tonylindeberg/pytempscsp.git\n```\n\n## References\n\nLindeberg (2023) \"A time-causal and time-recursive temporal scale-space representation\nof temporal signals and past time\", Biological Cybernetics 117 (1-2): 21-59.\n([Open Access](http://dx.doi.org/10.1007/s00422-022-00953-6))\n\nLindeberg (2016) \"Time-causal and time-recursive spatio-temporal receptive fields\",\nJournal of Mathematical Imaging and Vision 55(1): 50-88.\n([Open Access](https://doi.org/10.1007/s10851-015-0613-9))\n\nThe time-causal limit kernel was first defined in Lindeberg (2016), however,\nthen also in combination with a spatial domain, and experimentally tested on\nvideo data. The later overview paper (Lindeberg 2023) gives a dedicated treatment\nfor a purely temporal domain, and also with relations to Koenderink's scale-time\nkernels and the ex-Gaussian kernel.\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Temporal Scale-Space Toolbox for Python.",
    "version": "0.9.4",
    "project_urls": {
        "Homepage": "https://github.com/tonylindeberg/pytempscsp",
        "Repository": "https://github.com/tonylindeberg/pytempscsp"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "08c60e766f576ebac8c550770bc3d7c66cbb66969110000a083bb96b412e5377",
                "md5": "bd9b66baa691ac8d5fb97082a3803c0c",
                "sha256": "2dfa41f61754b469f09887177e2abed6c14e343148a0b7d9ffe4e0f33b27872b"
            },
            "downloads": -1,
            "filename": "pytempscsp-0.9.4-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "bd9b66baa691ac8d5fb97082a3803c0c",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7,<4.0",
            "size": 7792,
            "upload_time": "2024-03-16T12:51:59",
            "upload_time_iso_8601": "2024-03-16T12:51:59.357460Z",
            "url": "https://files.pythonhosted.org/packages/08/c6/0e766f576ebac8c550770bc3d7c66cbb66969110000a083bb96b412e5377/pytempscsp-0.9.4-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "53f67924cb65f2a48cedcf2ec2fcba739d45809b5c83088773c596b516eb6cd9",
                "md5": "d5248f497cd1222dff167fdc69673571",
                "sha256": "080ce2debd5ffabb4074056a5d63a10d110c6bc36a78339d92f56db5de9f8f5c"
            },
            "downloads": -1,
            "filename": "pytempscsp-0.9.4.tar.gz",
            "has_sig": false,
            "md5_digest": "d5248f497cd1222dff167fdc69673571",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7,<4.0",
            "size": 7312,
            "upload_time": "2024-03-16T12:52:01",
            "upload_time_iso_8601": "2024-03-16T12:52:01.736391Z",
            "url": "https://files.pythonhosted.org/packages/53/f6/7924cb65f2a48cedcf2ec2fcba739d45809b5c83088773c596b516eb6cd9/pytempscsp-0.9.4.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-03-16 12:52:01",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "tonylindeberg",
    "github_project": "pytempscsp",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "pytempscsp"
}
        
Elapsed time: 0.21843s