# QuantJourney Framework
## Introduction
Welcome to the QuantJourney Framework! This comprehensive investing package is designed to streamline your access to financial data, simplify data processing, and enhance data visualization for quantitative analysis and backtesting of financial investments.
## Key Features
- Custom Algorithm Development
- Risk Management Strategies
- Backtesting and Optimization
- Real-World Applications
- Community and Support
## Installation
To install the QuantJourney client library, simply run:
```bash
pip install quantjourney
```
## Usage
Here's a quick example of how to use the QuantJourney client:
```python
import asyncio
from quantjourney import QuantJourney
async def main():
qj = QuantJourney()
qj.authenticate("your_username", "your_password")
df = qj.get_ohlcv("AAPL", "NASDAQ", "2023-01-01", "2023-12-31")
print(df)
asyncio.run(main())
```
## Documentation
For more detailed information on using the QuantJourney Framework, please refer to our Wiki.
## Prerequisites
- Python 3.7 or higher
- Basic understanding of financial markets and quantitative analysis
## Contributing
We welcome contributions! Please see our Contributing Guide for more details.
## Issues
If you encounter any issues, please report them on our Issue Tracker.
## License
This project is licensed under the MIT License - see the LICENSE file for details.
## Contact
For any questions or support, please email contact@quantjourney.pro.
Happy coding and investing!
Raw data
{
"_id": null,
"home_page": "https://github.com/QuantJourneyOrg/quantjourney",
"name": "quantjourney",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.7",
"maintainer_email": null,
"keywords": null,
"author": "QuantJourney",
"author_email": "jakub@quantjourney.pro",
"download_url": "https://files.pythonhosted.org/packages/8c/8e/ff660ea5b19aa3d12650fd5cada19cb6bd2d7eedd7bb109017dd4d9067a5/quantjourney-0.1.0.tar.gz",
"platform": null,
"description": "# QuantJourney Framework\n\n## Introduction\n\nWelcome to the QuantJourney Framework! This comprehensive investing package is designed to streamline your access to financial data, simplify data processing, and enhance data visualization for quantitative analysis and backtesting of financial investments.\n\n## Key Features\n\n- Custom Algorithm Development\n- Risk Management Strategies\n- Backtesting and Optimization\n- Real-World Applications\n- Community and Support\n\n## Installation\n\nTo install the QuantJourney client library, simply run:\n\n```bash\npip install quantjourney\n```\n\n## Usage\n\nHere's a quick example of how to use the QuantJourney client:\n\n```python\nimport asyncio\nfrom quantjourney import QuantJourney\n\nasync def main():\n qj = QuantJourney()\n qj.authenticate(\"your_username\", \"your_password\")\n df = qj.get_ohlcv(\"AAPL\", \"NASDAQ\", \"2023-01-01\", \"2023-12-31\")\n print(df)\n\nasyncio.run(main())\n```\n\n## Documentation\n\nFor more detailed information on using the QuantJourney Framework, please refer to our Wiki.\n\n## Prerequisites\n\n- Python 3.7 or higher\n- Basic understanding of financial markets and quantitative analysis\n\n## Contributing\n\nWe welcome contributions! Please see our Contributing Guide for more details.\n\n## Issues\n\nIf you encounter any issues, please report them on our Issue Tracker.\n\n## License\n\nThis project is licensed under the MIT License - see the LICENSE file for details.\n\n## Contact\n\nFor any questions or support, please email contact@quantjourney.pro.\n\nHappy coding and investing!\n",
"bugtrack_url": null,
"license": null,
"summary": "A client library for the QuantJourney API",
"version": "0.1.0",
"project_urls": {
"Homepage": "https://github.com/QuantJourneyOrg/quantjourney"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "72b585f98243c3142bbf80d129fef58378587a4d0bb7d3c062f649fe8d36e882",
"md5": "da1c97801cc6a3f74478e5ad22759b02",
"sha256": "ff74fe11393f032056e569f6293d55e5d62f589f8448fe04704a8e35d297def2"
},
"downloads": -1,
"filename": "quantjourney-0.1.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "da1c97801cc6a3f74478e5ad22759b02",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.7",
"size": 6514,
"upload_time": "2024-08-07T05:40:29",
"upload_time_iso_8601": "2024-08-07T05:40:29.133385Z",
"url": "https://files.pythonhosted.org/packages/72/b5/85f98243c3142bbf80d129fef58378587a4d0bb7d3c062f649fe8d36e882/quantjourney-0.1.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "8c8eff660ea5b19aa3d12650fd5cada19cb6bd2d7eedd7bb109017dd4d9067a5",
"md5": "a38283f5b04b46dba96d3c1e1ff9aa7e",
"sha256": "bd0ec4ffdf45a8159b41519fc3d207692cdb44bc9b665753496c88ab55fa3a44"
},
"downloads": -1,
"filename": "quantjourney-0.1.0.tar.gz",
"has_sig": false,
"md5_digest": "a38283f5b04b46dba96d3c1e1ff9aa7e",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.7",
"size": 7447,
"upload_time": "2024-08-07T05:40:30",
"upload_time_iso_8601": "2024-08-07T05:40:30.736852Z",
"url": "https://files.pythonhosted.org/packages/8c/8e/ff660ea5b19aa3d12650fd5cada19cb6bd2d7eedd7bb109017dd4d9067a5/quantjourney-0.1.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-08-07 05:40:30",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "QuantJourneyOrg",
"github_project": "quantjourney",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "quantjourney"
}