raven-pydf


Nameraven-pydf JSON
Version 1.1.4 PyPI version JSON
download
home_pagehttps://github.com/raven-computing/pydf
SummaryAn implementation of the DataFrame specification in Python
upload_time2023-07-11 19:01:09
maintainer
docs_urlNone
authorPhil Gaiser
requires_python>=3.7
licenseApache Software License
keywords
VCS
bugtrack_url
requirements numpy pylint twine
Travis-CI No Travis.
coveralls test coverage No coveralls.
            This is the official implementation of the DataFrame specification provided by Raven Computing.

## Getting Started

Install via:
```
pip install raven-pydf
```

After installation you can use the entire DataFrame API by importing one class:
```python
from raven.struct.dataframe import DataFrame

# read a DataFrame file into memory
df = DataFrame.read("/path/to/myFile.df")

# show the first 10 rows on stdout
print(df.head(10))
```
Alternatively, you can import all concrete Column types directly, for example:
```python
from raven.struct.dataframe import (DefaultDataFrame,
                                    IntColumn,
                                    DoubleColumn,
                                    StringColumn)

# create a DataFrame with 3 columns and 3 rows
df = DefaultDataFrame(
        IntColumn("A", [1, 2, 3]),
        DoubleColumn("B", [4.4, 5.5, 6.6]),
        StringColumn("C", ["cat", "dog", "horse"]))

print(df)
# _| A B   C
# 0| 1 4.4 cat
# 1| 2 5.5 dog
# 2| 3 6.6 horse
```

## Compatibility

This library requires **Python3.7** or higher.

Internally, this library uses [Numpy](https://github.com/numpy/numpy) for array operations. The minimum required version is v1.19.0

## Documentation

The unified documentation is available [here](https://www.raven-computing.com/docs/dataframe?language=python).

Additional features implemented in Python are documented in the [Wiki](https://github.com/raven-computing/pydf/wiki).

## License

This library is licensed under the Apache License Version 2 - see the [LICENSE](https://github.com/raven-computing/pydf/blob/master/LICENSE) for details.



            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/raven-computing/pydf",
    "name": "raven-pydf",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": "",
    "keywords": "",
    "author": "Phil Gaiser",
    "author_email": "phil.gaiser@raven-computing.com",
    "download_url": "https://files.pythonhosted.org/packages/b5/23/b7f075b1e469d76a443f4d796738f06895d476274543cad721b93b391e57/raven-pydf-1.1.4.tar.gz",
    "platform": null,
    "description": "This is the official implementation of the DataFrame specification provided by Raven Computing.\n\n## Getting Started\n\nInstall via:\n```\npip install raven-pydf\n```\n\nAfter installation you can use the entire DataFrame API by importing one class:\n```python\nfrom raven.struct.dataframe import DataFrame\n\n# read a DataFrame file into memory\ndf = DataFrame.read(\"/path/to/myFile.df\")\n\n# show the first 10 rows on stdout\nprint(df.head(10))\n```\nAlternatively, you can import all concrete Column types directly, for example:\n```python\nfrom raven.struct.dataframe import (DefaultDataFrame,\n                                    IntColumn,\n                                    DoubleColumn,\n                                    StringColumn)\n\n# create a DataFrame with 3 columns and 3 rows\ndf = DefaultDataFrame(\n        IntColumn(\"A\", [1, 2, 3]),\n        DoubleColumn(\"B\", [4.4, 5.5, 6.6]),\n        StringColumn(\"C\", [\"cat\", \"dog\", \"horse\"]))\n\nprint(df)\n# _| A B   C\n# 0| 1 4.4 cat\n# 1| 2 5.5 dog\n# 2| 3 6.6 horse\n```\n\n## Compatibility\n\nThis library requires **Python3.7** or higher.\n\nInternally, this library uses [Numpy](https://github.com/numpy/numpy) for array operations. The minimum required version is v1.19.0\n\n## Documentation\n\nThe unified documentation is available [here](https://www.raven-computing.com/docs/dataframe?language=python).\n\nAdditional features implemented in Python are documented in the [Wiki](https://github.com/raven-computing/pydf/wiki).\n\n## License\n\nThis library is licensed under the Apache License Version 2 - see the [LICENSE](https://github.com/raven-computing/pydf/blob/master/LICENSE) for details.\n\n\n",
    "bugtrack_url": null,
    "license": "Apache Software License",
    "summary": "An implementation of the DataFrame specification in Python",
    "version": "1.1.4",
    "project_urls": {
        "Homepage": "https://github.com/raven-computing/pydf"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "641a3d59c3daea7a95fc1100d4414258682c76e15bdb7d89f47d17e4b939d1b9",
                "md5": "cc94d29e7fbfce4c6b70e7e085b3e8d7",
                "sha256": "a454e79107301d450a30e630ba133229588a1f36d67af8086abd7e2958577be2"
            },
            "downloads": -1,
            "filename": "raven_pydf-1.1.4-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "cc94d29e7fbfce4c6b70e7e085b3e8d7",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 92784,
            "upload_time": "2023-07-11T19:01:05",
            "upload_time_iso_8601": "2023-07-11T19:01:05.788393Z",
            "url": "https://files.pythonhosted.org/packages/64/1a/3d59c3daea7a95fc1100d4414258682c76e15bdb7d89f47d17e4b939d1b9/raven_pydf-1.1.4-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "b523b7f075b1e469d76a443f4d796738f06895d476274543cad721b93b391e57",
                "md5": "d2ef30fa99a933301b116d4a1b7dff52",
                "sha256": "e335bcbffb8e11d06e1e1010729c501f08ebde282227b4a80540c0ebaa950f81"
            },
            "downloads": -1,
            "filename": "raven-pydf-1.1.4.tar.gz",
            "has_sig": false,
            "md5_digest": "d2ef30fa99a933301b116d4a1b7dff52",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 66887,
            "upload_time": "2023-07-11T19:01:09",
            "upload_time_iso_8601": "2023-07-11T19:01:09.445698Z",
            "url": "https://files.pythonhosted.org/packages/b5/23/b7f075b1e469d76a443f4d796738f06895d476274543cad721b93b391e57/raven-pydf-1.1.4.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-07-11 19:01:09",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "raven-computing",
    "github_project": "pydf",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [
        {
            "name": "numpy",
            "specs": [
                [
                    "==",
                    "1.19.0"
                ]
            ]
        },
        {
            "name": "pylint",
            "specs": [
                [
                    "==",
                    "2.7.2"
                ]
            ]
        },
        {
            "name": "twine",
            "specs": [
                [
                    "==",
                    "3.2.0"
                ]
            ]
        }
    ],
    "lcname": "raven-pydf"
}
        
Elapsed time: 0.18801s