This is the official implementation of the DataFrame specification provided by Raven Computing.
## Getting Started
Install via:
```
pip install raven-pydf
```
After installation you can use the entire DataFrame API by importing one class:
```python
from raven.struct.dataframe import DataFrame
# read a DataFrame file into memory
df = DataFrame.read("/path/to/myFile.df")
# show the first 10 rows on stdout
print(df.head(10))
```
Alternatively, you can import all concrete Column types directly, for example:
```python
from raven.struct.dataframe import (DefaultDataFrame,
IntColumn,
DoubleColumn,
StringColumn)
# create a DataFrame with 3 columns and 3 rows
df = DefaultDataFrame(
IntColumn("A", [1, 2, 3]),
DoubleColumn("B", [4.4, 5.5, 6.6]),
StringColumn("C", ["cat", "dog", "horse"]))
print(df)
# _| A B C
# 0| 1 4.4 cat
# 1| 2 5.5 dog
# 2| 3 6.6 horse
```
## Compatibility
This library requires **Python3.7** or higher.
Internally, this library uses [Numpy](https://github.com/numpy/numpy) for array operations. The minimum required version is v1.19.0
## Documentation
The unified documentation is available [here](https://www.raven-computing.com/docs/dataframe?language=python).
Additional features implemented in Python are documented in the [Wiki](https://github.com/raven-computing/pydf/wiki).
## License
This library is licensed under the Apache License Version 2 - see the [LICENSE](https://github.com/raven-computing/pydf/blob/master/LICENSE) for details.
Raw data
{
"_id": null,
"home_page": "https://github.com/raven-computing/pydf",
"name": "raven-pydf",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.7",
"maintainer_email": "",
"keywords": "",
"author": "Phil Gaiser",
"author_email": "phil.gaiser@raven-computing.com",
"download_url": "https://files.pythonhosted.org/packages/b5/23/b7f075b1e469d76a443f4d796738f06895d476274543cad721b93b391e57/raven-pydf-1.1.4.tar.gz",
"platform": null,
"description": "This is the official implementation of the DataFrame specification provided by Raven Computing.\n\n## Getting Started\n\nInstall via:\n```\npip install raven-pydf\n```\n\nAfter installation you can use the entire DataFrame API by importing one class:\n```python\nfrom raven.struct.dataframe import DataFrame\n\n# read a DataFrame file into memory\ndf = DataFrame.read(\"/path/to/myFile.df\")\n\n# show the first 10 rows on stdout\nprint(df.head(10))\n```\nAlternatively, you can import all concrete Column types directly, for example:\n```python\nfrom raven.struct.dataframe import (DefaultDataFrame,\n IntColumn,\n DoubleColumn,\n StringColumn)\n\n# create a DataFrame with 3 columns and 3 rows\ndf = DefaultDataFrame(\n IntColumn(\"A\", [1, 2, 3]),\n DoubleColumn(\"B\", [4.4, 5.5, 6.6]),\n StringColumn(\"C\", [\"cat\", \"dog\", \"horse\"]))\n\nprint(df)\n# _| A B C\n# 0| 1 4.4 cat\n# 1| 2 5.5 dog\n# 2| 3 6.6 horse\n```\n\n## Compatibility\n\nThis library requires **Python3.7** or higher.\n\nInternally, this library uses [Numpy](https://github.com/numpy/numpy) for array operations. The minimum required version is v1.19.0\n\n## Documentation\n\nThe unified documentation is available [here](https://www.raven-computing.com/docs/dataframe?language=python).\n\nAdditional features implemented in Python are documented in the [Wiki](https://github.com/raven-computing/pydf/wiki).\n\n## License\n\nThis library is licensed under the Apache License Version 2 - see the [LICENSE](https://github.com/raven-computing/pydf/blob/master/LICENSE) for details.\n\n\n",
"bugtrack_url": null,
"license": "Apache Software License",
"summary": "An implementation of the DataFrame specification in Python",
"version": "1.1.4",
"project_urls": {
"Homepage": "https://github.com/raven-computing/pydf"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "641a3d59c3daea7a95fc1100d4414258682c76e15bdb7d89f47d17e4b939d1b9",
"md5": "cc94d29e7fbfce4c6b70e7e085b3e8d7",
"sha256": "a454e79107301d450a30e630ba133229588a1f36d67af8086abd7e2958577be2"
},
"downloads": -1,
"filename": "raven_pydf-1.1.4-py3-none-any.whl",
"has_sig": false,
"md5_digest": "cc94d29e7fbfce4c6b70e7e085b3e8d7",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.7",
"size": 92784,
"upload_time": "2023-07-11T19:01:05",
"upload_time_iso_8601": "2023-07-11T19:01:05.788393Z",
"url": "https://files.pythonhosted.org/packages/64/1a/3d59c3daea7a95fc1100d4414258682c76e15bdb7d89f47d17e4b939d1b9/raven_pydf-1.1.4-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "b523b7f075b1e469d76a443f4d796738f06895d476274543cad721b93b391e57",
"md5": "d2ef30fa99a933301b116d4a1b7dff52",
"sha256": "e335bcbffb8e11d06e1e1010729c501f08ebde282227b4a80540c0ebaa950f81"
},
"downloads": -1,
"filename": "raven-pydf-1.1.4.tar.gz",
"has_sig": false,
"md5_digest": "d2ef30fa99a933301b116d4a1b7dff52",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.7",
"size": 66887,
"upload_time": "2023-07-11T19:01:09",
"upload_time_iso_8601": "2023-07-11T19:01:09.445698Z",
"url": "https://files.pythonhosted.org/packages/b5/23/b7f075b1e469d76a443f4d796738f06895d476274543cad721b93b391e57/raven-pydf-1.1.4.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-07-11 19:01:09",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "raven-computing",
"github_project": "pydf",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"requirements": [
{
"name": "numpy",
"specs": [
[
"==",
"1.19.0"
]
]
},
{
"name": "pylint",
"specs": [
[
"==",
"2.7.2"
]
]
},
{
"name": "twine",
"specs": [
[
"==",
"3.2.0"
]
]
}
],
"lcname": "raven-pydf"
}