recommender-ibmws


Namerecommender-ibmws JSON
Version 0.1.3 PyPI version JSON
download
home_pagehttps://github.com/joanamdsantos/recommender_ibmws_pkg
SummaryUser article recommender system for IBM Watson Studio
upload_time2024-08-28 16:27:53
maintainerNone
docs_urlNone
authorJoana Martins dos Santos
requires_python>=3.12
licenseNone
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Recommender_ibmws

Recommender IBMWS package is a Python Package to recommend articles for users of the IBM Watson Studio platform.

This Recommender uses a hybrid approach of Content-Based Filtering and Collaborative Filtering to make recommendations.  
The content base recommendation system developed relies on a user profile, text vectorization, similarity calculation, ranking and recommendation, as well as handling of new users to deal with the cold start problem. 

### How to use:

Import the Recommender
```
from recommender_ibmws.recommender import Recommender
rec = Recommender()
```

Load data
```
rec.load_data(inter_path='user-item-interactions.csv', content_path='articles_community.csv')
```

Make recomendations
```
rec.make_content_recs(user_id=8, m=10)
```

Find number of users
```
rec.n_users
```


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/joanamdsantos/recommender_ibmws_pkg",
    "name": "recommender-ibmws",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.12",
    "maintainer_email": null,
    "keywords": null,
    "author": "Joana Martins dos Santos",
    "author_email": "Joana Martins dos Santos <joanamlmsantos@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/06/34/b45c5c75029a903d38c9a5ea90d7edf83752eadeaf27b943fd4eadf9ca73/recommender_ibmws-0.1.3.tar.gz",
    "platform": null,
    "description": "# Recommender_ibmws\n\nRecommender IBMWS package is a Python Package to recommend articles for users of the IBM Watson Studio platform.\n\nThis Recommender uses a hybrid approach of Content-Based Filtering and Collaborative Filtering to make recommendations.  \nThe content base recommendation system developed relies on a user profile, text vectorization, similarity calculation, ranking and recommendation, as well as handling of new users to deal with the cold start problem. \n\n### How to use:\n\nImport the Recommender\n```\nfrom recommender_ibmws.recommender import Recommender\nrec = Recommender()\n```\n\nLoad data\n```\nrec.load_data(inter_path='user-item-interactions.csv', content_path='articles_community.csv')\n```\n\nMake recomendations\n```\nrec.make_content_recs(user_id=8, m=10)\n```\n\nFind number of users\n```\nrec.n_users\n```\n\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "User article recommender system for IBM Watson Studio",
    "version": "0.1.3",
    "project_urls": {
        "Homepage": "https://github.com/joanamdsantos/recommender_ibmws_pkg",
        "Issues": "https://github.com/joanamdsantos/recommender_ibmws_pkg/issues"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "4cc19664828477eee135f36eeef34126889794497e0ec26b7dff1463438cb386",
                "md5": "5f90a155f3bde67966c03cedcffd375d",
                "sha256": "dda442a79079abbdef322c182ce18b5e471708c878a3128cfc1180f0f1438d18"
            },
            "downloads": -1,
            "filename": "recommender_ibmws-0.1.3-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "5f90a155f3bde67966c03cedcffd375d",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.12",
            "size": 4133259,
            "upload_time": "2024-08-28T16:27:49",
            "upload_time_iso_8601": "2024-08-28T16:27:49.913919Z",
            "url": "https://files.pythonhosted.org/packages/4c/c1/9664828477eee135f36eeef34126889794497e0ec26b7dff1463438cb386/recommender_ibmws-0.1.3-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "0634b45c5c75029a903d38c9a5ea90d7edf83752eadeaf27b943fd4eadf9ca73",
                "md5": "199318dfbe3aed1c2319c27a54b2e20d",
                "sha256": "10d36a9644d120bbd1dcc4be94aae1ba88da649ae1d4b97ec357a2432b6bfda8"
            },
            "downloads": -1,
            "filename": "recommender_ibmws-0.1.3.tar.gz",
            "has_sig": false,
            "md5_digest": "199318dfbe3aed1c2319c27a54b2e20d",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.12",
            "size": 4124688,
            "upload_time": "2024-08-28T16:27:53",
            "upload_time_iso_8601": "2024-08-28T16:27:53.856975Z",
            "url": "https://files.pythonhosted.org/packages/06/34/b45c5c75029a903d38c9a5ea90d7edf83752eadeaf27b943fd4eadf9ca73/recommender_ibmws-0.1.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-08-28 16:27:53",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "joanamdsantos",
    "github_project": "recommender_ibmws_pkg",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "recommender-ibmws"
}
        
Elapsed time: 0.40157s