scPEFT


NamescPEFT JSON
Version 0.1.0 PyPI version JSON
download
home_pagehttps://github.com/SELECT-FROM/scPEFT
SummaryParameter-Efficient Fine-Tuning Enhances Adaptation of Single Cell Large Language Model.
upload_time2024-08-17 10:12:08
maintainerNone
docs_urlNone
authorFei He
requires_python<3.11,>=3.7.12
licenseMIT
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # scPEFT

This is the official repository for **scPEFT: Parameter-Efficient Fine-Tuning Enhances Adaptation of Single Cell Large Language Model.**

[![Preprint](https://img.shields.io/badge/preprint-available-brightgreen)](https://www.biorxiv.org/content/10.1101/2024.01.27.577455v1) &nbsp;

## Installation

scPEFT works with Python >= 3.7.13. Please make sure you have the correct version of Python installed pre-installation.

scPEFT is available on PyPI. To install scPEFT, run the following command:

```bash
pip install scpeft
```

For developing, run the following command:

```
git clone https://github.com/SELECT-FROM/scPEFT
cd scPEFT
```



## Get Started

1. Download the upstream model  [scGPT model checkpoint](https://github.com/bowang-lab/scGPT/blob/main/README.md#pretrained-scgpt-model-zoo) and place it at e.g., `work_dir/scPEFT/save`. We recommend using the [whole-human](https://drive.google.com/drive/folders/1oWh_-ZRdhtoGQ2Fw24HP41FgLoomVo-y?usp=sharing) model for most applications by default, which pretrained on 33 million normal human cells..

2. The tutorials of scPEFT for downstream tasks in  [tutorial_peft](https://github.com/SELECT-FROM/scPEFT/tree/main/tutorial_peft).  Here are the links to the downstream tasks and tutorials mentioned in our article

   | Downstream task          | Link                                                         |
   | :----------------------- | :----------------------------------------------------------- |
   | cell type identification | [Tutorial_Identification.ipynb](https://github.com/SELECT-FROM/scPEFT/blob/main/tutorial_peft/Tutorial_Identification.ipynb) |
   | batch correction         | [Tutorial_BatchCorrection.ipynb](https://github.com/SELECT-FROM/scPEFT/blob/main/tutorial_peft/Tutorial_BatchCorrection.ipynb) |
   | perturbation             | [Tutorial_Perturbation.ipynb](https://github.com/SELECT-FROM/scPEFT/blob/main/tutorial_peft/Tutorial_Perturbation.ipynb) |
   | case control             | [Tutorial_CaseControl.ipynb](https://github.com/SELECT-FROM/scPEFT/blob/main/tutorial_peft/Tutorial_Perturbation.ipynb) |

   

## Contributing

We greatly welcome contributions to scPEFT. Please submit a pull request if you have any ideas or bug fixes. We also welcome any issues you encounter while using scPEFT.

## Built With

We sincerely thank the authors of following open-source projects:

- [scGPT](https://github.com/bowang-lab/scGPT)
- [scanpy](https://github.com/scverse/scanpy)
- [scvi-tools](https://github.com/scverse/scvi-tools)
- [scib](https://github.com/theislab/scib)
- [datasets](https://github.com/huggingface/datasets)
- [transformers](https://github.com/huggingface/transformers)

## Citing scPEFT

```bibtex
@article {He2024.01.27.577455,
	author = {Fei He and Ruixin Fei and Mingyue Gao and Li Su and Xinyu Zhang and Dong Xu},
	title = {Parameter-Efficient Fine-Tuning Enhances Adaptation of Single Cell Large Language Model for Cell Type Identification},
	year = {2024},
	doi = {10.1101/2024.01.27.577455},
	publisher = {Cold Spring Harbor Laboratory},
	URL = {https://www.biorxiv.org/content/early/2024/01/30/2024.01.27.577455},
	journal = {bioRxiv}
}
```


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/SELECT-FROM/scPEFT",
    "name": "scPEFT",
    "maintainer": null,
    "docs_url": null,
    "requires_python": "<3.11,>=3.7.12",
    "maintainer_email": null,
    "keywords": null,
    "author": "Fei He",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/89/e0/d5050d9a713ee851942473f6c13adf95a0659586bea88cf0f3905a3cbb92/scpeft-0.1.0.tar.gz",
    "platform": null,
    "description": "# scPEFT\n\nThis is the official repository for **scPEFT: Parameter-Efficient Fine-Tuning Enhances Adaptation of Single Cell Large Language Model.**\n\n[![Preprint](https://img.shields.io/badge/preprint-available-brightgreen)](https://www.biorxiv.org/content/10.1101/2024.01.27.577455v1) &nbsp;\n\n## Installation\n\nscPEFT works with Python >= 3.7.13. Please make sure you have the correct version of Python installed pre-installation.\n\nscPEFT is available on PyPI. To install scPEFT, run the following command:\n\n```bash\npip install scpeft\n```\n\nFor developing, run the following command:\n\n```\ngit clone https://github.com/SELECT-FROM/scPEFT\ncd scPEFT\n```\n\n\n\n## Get Started\n\n1. Download the upstream model  [scGPT model checkpoint](https://github.com/bowang-lab/scGPT/blob/main/README.md#pretrained-scgpt-model-zoo) and place it at e.g., `work_dir/scPEFT/save`. We recommend using the [whole-human](https://drive.google.com/drive/folders/1oWh_-ZRdhtoGQ2Fw24HP41FgLoomVo-y?usp=sharing) model for most applications by default, which pretrained on 33 million normal human cells..\n\n2. The tutorials of scPEFT for downstream tasks in  [tutorial_peft](https://github.com/SELECT-FROM/scPEFT/tree/main/tutorial_peft).  Here are the links to the downstream tasks and tutorials mentioned in our article\n\n   | Downstream task          | Link                                                         |\n   | :----------------------- | :----------------------------------------------------------- |\n   | cell type identification | [Tutorial_Identification.ipynb](https://github.com/SELECT-FROM/scPEFT/blob/main/tutorial_peft/Tutorial_Identification.ipynb) |\n   | batch correction         | [Tutorial_BatchCorrection.ipynb](https://github.com/SELECT-FROM/scPEFT/blob/main/tutorial_peft/Tutorial_BatchCorrection.ipynb) |\n   | perturbation             | [Tutorial_Perturbation.ipynb](https://github.com/SELECT-FROM/scPEFT/blob/main/tutorial_peft/Tutorial_Perturbation.ipynb) |\n   | case control             | [Tutorial_CaseControl.ipynb](https://github.com/SELECT-FROM/scPEFT/blob/main/tutorial_peft/Tutorial_Perturbation.ipynb) |\n\n   \n\n## Contributing\n\nWe greatly welcome contributions to scPEFT. Please submit a pull request if you have any ideas or bug fixes. We also welcome any issues you encounter while using scPEFT.\n\n## Built With\n\nWe sincerely thank the authors of following open-source projects:\n\n- [scGPT](https://github.com/bowang-lab/scGPT)\n- [scanpy](https://github.com/scverse/scanpy)\n- [scvi-tools](https://github.com/scverse/scvi-tools)\n- [scib](https://github.com/theislab/scib)\n- [datasets](https://github.com/huggingface/datasets)\n- [transformers](https://github.com/huggingface/transformers)\n\n## Citing scPEFT\n\n```bibtex\n@article {He2024.01.27.577455,\n\tauthor = {Fei He and Ruixin Fei and Mingyue Gao and Li Su and Xinyu Zhang and Dong Xu},\n\ttitle = {Parameter-Efficient Fine-Tuning Enhances Adaptation of Single Cell Large Language Model for Cell Type Identification},\n\tyear = {2024},\n\tdoi = {10.1101/2024.01.27.577455},\n\tpublisher = {Cold Spring Harbor Laboratory},\n\tURL = {https://www.biorxiv.org/content/early/2024/01/30/2024.01.27.577455},\n\tjournal = {bioRxiv}\n}\n```\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Parameter-Efficient Fine-Tuning Enhances Adaptation of Single Cell Large Language Model.",
    "version": "0.1.0",
    "project_urls": {
        "Homepage": "https://github.com/SELECT-FROM/scPEFT",
        "Repository": "https://github.com/SELECT-FROM/scPEFT"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "6e536323d5dade5a2bafa35e7f125ff285f1de57fc29612ebd56d0f33d51b13d",
                "md5": "e80c41450dcc609011c98a8402810715",
                "sha256": "cd2223d633e028f4b630e716970b819d2b3c0b848c999046f631011c17046a28"
            },
            "downloads": -1,
            "filename": "scpeft-0.1.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "e80c41450dcc609011c98a8402810715",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": "<3.11,>=3.7.12",
            "size": 847102,
            "upload_time": "2024-08-17T10:12:05",
            "upload_time_iso_8601": "2024-08-17T10:12:05.455871Z",
            "url": "https://files.pythonhosted.org/packages/6e/53/6323d5dade5a2bafa35e7f125ff285f1de57fc29612ebd56d0f33d51b13d/scpeft-0.1.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "89e0d5050d9a713ee851942473f6c13adf95a0659586bea88cf0f3905a3cbb92",
                "md5": "6c0140b03c68083be26a7f9461d34c8f",
                "sha256": "be873deb28f26a20f910de9c12807f176538dc09832b2f3ee29df6ba925e29af"
            },
            "downloads": -1,
            "filename": "scpeft-0.1.0.tar.gz",
            "has_sig": false,
            "md5_digest": "6c0140b03c68083be26a7f9461d34c8f",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": "<3.11,>=3.7.12",
            "size": 823600,
            "upload_time": "2024-08-17T10:12:08",
            "upload_time_iso_8601": "2024-08-17T10:12:08.950027Z",
            "url": "https://files.pythonhosted.org/packages/89/e0/d5050d9a713ee851942473f6c13adf95a0659586bea88cf0f3905a3cbb92/scpeft-0.1.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-08-17 10:12:08",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "SELECT-FROM",
    "github_project": "scPEFT",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "scpeft"
}
        
Elapsed time: 0.30262s