| Name | scPEFT JSON |
| Version |
0.1.0
JSON |
| download |
| home_page | https://github.com/SELECT-FROM/scPEFT |
| Summary | Parameter-Efficient Fine-Tuning Enhances Adaptation of Single Cell Large Language Model. |
| upload_time | 2024-08-17 10:12:08 |
| maintainer | None |
| docs_url | None |
| author | Fei He |
| requires_python | <3.11,>=3.7.12 |
| license | MIT |
| keywords |
|
| VCS |
 |
| bugtrack_url |
|
| requirements |
No requirements were recorded.
|
| Travis-CI |
No Travis.
|
| coveralls test coverage |
No coveralls.
|
# scPEFT
This is the official repository for **scPEFT: Parameter-Efficient Fine-Tuning Enhances Adaptation of Single Cell Large Language Model.**
[](https://www.biorxiv.org/content/10.1101/2024.01.27.577455v1)
## Installation
scPEFT works with Python >= 3.7.13. Please make sure you have the correct version of Python installed pre-installation.
scPEFT is available on PyPI. To install scPEFT, run the following command:
```bash
pip install scpeft
```
For developing, run the following command:
```
git clone https://github.com/SELECT-FROM/scPEFT
cd scPEFT
```
## Get Started
1. Download the upstream model [scGPT model checkpoint](https://github.com/bowang-lab/scGPT/blob/main/README.md#pretrained-scgpt-model-zoo) and place it at e.g., `work_dir/scPEFT/save`. We recommend using the [whole-human](https://drive.google.com/drive/folders/1oWh_-ZRdhtoGQ2Fw24HP41FgLoomVo-y?usp=sharing) model for most applications by default, which pretrained on 33 million normal human cells..
2. The tutorials of scPEFT for downstream tasks in [tutorial_peft](https://github.com/SELECT-FROM/scPEFT/tree/main/tutorial_peft). Here are the links to the downstream tasks and tutorials mentioned in our article
| Downstream task | Link |
| :----------------------- | :----------------------------------------------------------- |
| cell type identification | [Tutorial_Identification.ipynb](https://github.com/SELECT-FROM/scPEFT/blob/main/tutorial_peft/Tutorial_Identification.ipynb) |
| batch correction | [Tutorial_BatchCorrection.ipynb](https://github.com/SELECT-FROM/scPEFT/blob/main/tutorial_peft/Tutorial_BatchCorrection.ipynb) |
| perturbation | [Tutorial_Perturbation.ipynb](https://github.com/SELECT-FROM/scPEFT/blob/main/tutorial_peft/Tutorial_Perturbation.ipynb) |
| case control | [Tutorial_CaseControl.ipynb](https://github.com/SELECT-FROM/scPEFT/blob/main/tutorial_peft/Tutorial_Perturbation.ipynb) |
## Contributing
We greatly welcome contributions to scPEFT. Please submit a pull request if you have any ideas or bug fixes. We also welcome any issues you encounter while using scPEFT.
## Built With
We sincerely thank the authors of following open-source projects:
- [scGPT](https://github.com/bowang-lab/scGPT)
- [scanpy](https://github.com/scverse/scanpy)
- [scvi-tools](https://github.com/scverse/scvi-tools)
- [scib](https://github.com/theislab/scib)
- [datasets](https://github.com/huggingface/datasets)
- [transformers](https://github.com/huggingface/transformers)
## Citing scPEFT
```bibtex
@article {He2024.01.27.577455,
author = {Fei He and Ruixin Fei and Mingyue Gao and Li Su and Xinyu Zhang and Dong Xu},
title = {Parameter-Efficient Fine-Tuning Enhances Adaptation of Single Cell Large Language Model for Cell Type Identification},
year = {2024},
doi = {10.1101/2024.01.27.577455},
publisher = {Cold Spring Harbor Laboratory},
URL = {https://www.biorxiv.org/content/early/2024/01/30/2024.01.27.577455},
journal = {bioRxiv}
}
```
Raw data
{
"_id": null,
"home_page": "https://github.com/SELECT-FROM/scPEFT",
"name": "scPEFT",
"maintainer": null,
"docs_url": null,
"requires_python": "<3.11,>=3.7.12",
"maintainer_email": null,
"keywords": null,
"author": "Fei He",
"author_email": null,
"download_url": "https://files.pythonhosted.org/packages/89/e0/d5050d9a713ee851942473f6c13adf95a0659586bea88cf0f3905a3cbb92/scpeft-0.1.0.tar.gz",
"platform": null,
"description": "# scPEFT\n\nThis is the official repository for **scPEFT: Parameter-Efficient Fine-Tuning Enhances Adaptation of Single Cell Large Language Model.**\n\n[](https://www.biorxiv.org/content/10.1101/2024.01.27.577455v1) \n\n## Installation\n\nscPEFT works with Python >= 3.7.13. Please make sure you have the correct version of Python installed pre-installation.\n\nscPEFT is available on PyPI. To install scPEFT, run the following command:\n\n```bash\npip install scpeft\n```\n\nFor developing, run the following command:\n\n```\ngit clone https://github.com/SELECT-FROM/scPEFT\ncd scPEFT\n```\n\n\n\n## Get Started\n\n1. Download the upstream model [scGPT model checkpoint](https://github.com/bowang-lab/scGPT/blob/main/README.md#pretrained-scgpt-model-zoo) and place it at e.g., `work_dir/scPEFT/save`. We recommend using the [whole-human](https://drive.google.com/drive/folders/1oWh_-ZRdhtoGQ2Fw24HP41FgLoomVo-y?usp=sharing) model for most applications by default, which pretrained on 33 million normal human cells..\n\n2. The tutorials of scPEFT for downstream tasks in [tutorial_peft](https://github.com/SELECT-FROM/scPEFT/tree/main/tutorial_peft). Here are the links to the downstream tasks and tutorials mentioned in our article\n\n | Downstream task | Link |\n | :----------------------- | :----------------------------------------------------------- |\n | cell type identification | [Tutorial_Identification.ipynb](https://github.com/SELECT-FROM/scPEFT/blob/main/tutorial_peft/Tutorial_Identification.ipynb) |\n | batch correction | [Tutorial_BatchCorrection.ipynb](https://github.com/SELECT-FROM/scPEFT/blob/main/tutorial_peft/Tutorial_BatchCorrection.ipynb) |\n | perturbation | [Tutorial_Perturbation.ipynb](https://github.com/SELECT-FROM/scPEFT/blob/main/tutorial_peft/Tutorial_Perturbation.ipynb) |\n | case control | [Tutorial_CaseControl.ipynb](https://github.com/SELECT-FROM/scPEFT/blob/main/tutorial_peft/Tutorial_Perturbation.ipynb) |\n\n \n\n## Contributing\n\nWe greatly welcome contributions to scPEFT. Please submit a pull request if you have any ideas or bug fixes. We also welcome any issues you encounter while using scPEFT.\n\n## Built With\n\nWe sincerely thank the authors of following open-source projects:\n\n- [scGPT](https://github.com/bowang-lab/scGPT)\n- [scanpy](https://github.com/scverse/scanpy)\n- [scvi-tools](https://github.com/scverse/scvi-tools)\n- [scib](https://github.com/theislab/scib)\n- [datasets](https://github.com/huggingface/datasets)\n- [transformers](https://github.com/huggingface/transformers)\n\n## Citing scPEFT\n\n```bibtex\n@article {He2024.01.27.577455,\n\tauthor = {Fei He and Ruixin Fei and Mingyue Gao and Li Su and Xinyu Zhang and Dong Xu},\n\ttitle = {Parameter-Efficient Fine-Tuning Enhances Adaptation of Single Cell Large Language Model for Cell Type Identification},\n\tyear = {2024},\n\tdoi = {10.1101/2024.01.27.577455},\n\tpublisher = {Cold Spring Harbor Laboratory},\n\tURL = {https://www.biorxiv.org/content/early/2024/01/30/2024.01.27.577455},\n\tjournal = {bioRxiv}\n}\n```\n\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Parameter-Efficient Fine-Tuning Enhances Adaptation of Single Cell Large Language Model.",
"version": "0.1.0",
"project_urls": {
"Homepage": "https://github.com/SELECT-FROM/scPEFT",
"Repository": "https://github.com/SELECT-FROM/scPEFT"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "6e536323d5dade5a2bafa35e7f125ff285f1de57fc29612ebd56d0f33d51b13d",
"md5": "e80c41450dcc609011c98a8402810715",
"sha256": "cd2223d633e028f4b630e716970b819d2b3c0b848c999046f631011c17046a28"
},
"downloads": -1,
"filename": "scpeft-0.1.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "e80c41450dcc609011c98a8402810715",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<3.11,>=3.7.12",
"size": 847102,
"upload_time": "2024-08-17T10:12:05",
"upload_time_iso_8601": "2024-08-17T10:12:05.455871Z",
"url": "https://files.pythonhosted.org/packages/6e/53/6323d5dade5a2bafa35e7f125ff285f1de57fc29612ebd56d0f33d51b13d/scpeft-0.1.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "89e0d5050d9a713ee851942473f6c13adf95a0659586bea88cf0f3905a3cbb92",
"md5": "6c0140b03c68083be26a7f9461d34c8f",
"sha256": "be873deb28f26a20f910de9c12807f176538dc09832b2f3ee29df6ba925e29af"
},
"downloads": -1,
"filename": "scpeft-0.1.0.tar.gz",
"has_sig": false,
"md5_digest": "6c0140b03c68083be26a7f9461d34c8f",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<3.11,>=3.7.12",
"size": 823600,
"upload_time": "2024-08-17T10:12:08",
"upload_time_iso_8601": "2024-08-17T10:12:08.950027Z",
"url": "https://files.pythonhosted.org/packages/89/e0/d5050d9a713ee851942473f6c13adf95a0659586bea88cf0f3905a3cbb92/scpeft-0.1.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-08-17 10:12:08",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "SELECT-FROM",
"github_project": "scPEFT",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "scpeft"
}