skyllh


Nameskyllh JSON
Version 23.2.1 PyPI version JSON
download
home_pagehttps://github.com/icecube/skyllh
SummaryThe SkyLLH framework is an open-source Python3-based package licensed under the GPLv3 license. It provides a modular framework for implementing custom likelihood functions and executing log-likelihood ratio hypothesis tests. The idea is to provide a class structure tied to the mathematical objects of the likelihood functions.
upload_time2023-11-23 14:27:19
maintainer
docs_urlNone
authorMartin Wolf
requires_python
licenseGPL-3+
keywords
VCS
bugtrack_url
requirements astropy numpy pyarrow scipy iminuit matplotlib tqdm
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # SkyLLH

[![Tests](https://github.com/icecube/skyllh/actions/workflows/pythonpackage.yml/badge.svg)](#)
[![Docs](https://github.com/icecube/skyllh/actions/workflows/documentation.yml/badge.svg)](https://icecube.github.io/skyllh/)
[![License: GPL-3.0](https://img.shields.io/badge/License-GPLv3-blue.svg)](https://opensource.org/licenses/GPL-3.0)

[[Full documentation]](https://icecube.github.io/skyllh/).

The SkyLLH framework is an open-source Python3-based package licensed under the
GPLv3 license. It provides a modular framework for implementing custom
likelihood functions and executing log-likelihood ratio hypothesis tests.
The idea is to provide a class structure tied to the mathematical objects of the
likelihood functions, rather than to entire abstract likelihood models.

The math formalism used in SkyLLH is described in the
[[math formalism document]](https://github.com/icecube/skyllh/blob/master/doc/user_manual.pdf).

# Installation

## Using pip

The latest `skyllh` release can be installed from
[PyPI](https://pypi.org/project/skyllh/) repository:
```bash
pip install skyllh
```

The current development version can be installed using pip:
```bash
pip install git+https://github.com/icecube/skyllh.git#egg=skyllh
```

Optionally, the editable package version with a specified reference can be
installed by:
```bash
pip install -e git+https://github.com/icecube/skyllh.git@[ref]#egg=skyllh
```
where
- `-e` is an editable flag
- `[ref]` is an optional argument containing a specific commit hash, branch name
  or tag

## Cloning from GitHub

The `skyllh` (and an optional private [i3skyllh](#i3skyllh)) package can be
installed by cloning the GitHub repository and adding it to the Python path:

```python
import sys

sys.path.insert(0, '/path/to/skyllh')
sys.path.insert(0, '/path/to/i3skyllh')  # optional
```

# Publications

Several publications about the SkyLLH software are available:

- IceCube Collaboration, C. Bellenghi, M. Karl, M. Wolf, et al. PoS ICRC2023 (2023) 1061
  [DOI](https://doi.org/10.22323/1.444.1061)
- IceCube Collaboration, T. Kontrimas, M. Wolf, et al. PoS ICRC2021 (2022) 1073
  [DOI](http://doi.org/10.22323/1.395.1073)
- IceCube Collaboration, M. Wolf, et al. PoS ICRC2019 (2020) 1035
  [DOI](https://doi.org/10.22323/1.358.1035)

# Developer Guidelines

These guidelines should help new developers of SkyLLH to join the development
process easily.

## Code style

- The code follows PEP8 coding style guidelines as close as possible.

- Code lines are maximum 80 characters wide.

- 4 spaces are used as one indentation level.

## Branching

- When implementing a new feature / change, first an issue must be created
  describing the new feature / change. Then a branch must be created referring
  to this issue. We recommend the branch name `fix<ISSUE_NUMBER>`, where
  `<ISSUE_NUMBER>` is the number of the created issue for this feature / change.

- In cases when SkyLLH needs to be updated because of a change in the i3skyllh
  package (see below), we recommend the branch name `i3skyllh_<ISSUE_NUMBER>`,
  where `<ISSUE_NUMBER>` is the number of the issue created in the i3skyllh
  repository. That way the *analysis unit tests* workflow will be able to find
  the correct skyllh branch corresponding to the i3skyllh change automatically.

## Releases and Versioning

- Release version numbers follow the format `v<YY>.<MAJOR>.<MINOR>`, where
  `<YY>` is the current year, `<MAJOR>` and `<MINOR>` are the major and minor
  version numbers of type integer. Example: `v23.2.0`.

- Release candidates follow the same format as releases, but have the additional
  suffix `.rc<NUMBER>`,  where `<NUMBER>` is an integer starting with 1.
  Example: `v23.2.0.rc1`

- Before creating the release on github, the version number needs to be updated
  in the Sphinx documentation: `doc/sphinx/conf.py`.

# i3skyllh

The [`i3skyllh`](https://github.com/icecube/i3skyllh) package provides
complementary pre-defined common analyses and datasets for the
[IceCube Neutrino Observatory](https://icecube.wisc.edu) detector in a private
[repository](https://github.com/icecube/i3skyllh).

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/icecube/skyllh",
    "name": "skyllh",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "",
    "author": "Martin Wolf",
    "author_email": "martin.wolf@icecube.wisc.edu",
    "download_url": "https://files.pythonhosted.org/packages/3c/30/22313ceea441c74b4c2c0d796bd87ae16b388856c8e3aaa9ded643d4b933/skyllh-23.2.1.tar.gz",
    "platform": null,
    "description": "# SkyLLH\n\n[![Tests](https://github.com/icecube/skyllh/actions/workflows/pythonpackage.yml/badge.svg)](#)\n[![Docs](https://github.com/icecube/skyllh/actions/workflows/documentation.yml/badge.svg)](https://icecube.github.io/skyllh/)\n[![License: GPL-3.0](https://img.shields.io/badge/License-GPLv3-blue.svg)](https://opensource.org/licenses/GPL-3.0)\n\n[[Full documentation]](https://icecube.github.io/skyllh/).\n\nThe SkyLLH framework is an open-source Python3-based package licensed under the\nGPLv3 license. It provides a modular framework for implementing custom\nlikelihood functions and executing log-likelihood ratio hypothesis tests.\nThe idea is to provide a class structure tied to the mathematical objects of the\nlikelihood functions, rather than to entire abstract likelihood models.\n\nThe math formalism used in SkyLLH is described in the\n[[math formalism document]](https://github.com/icecube/skyllh/blob/master/doc/user_manual.pdf).\n\n# Installation\n\n## Using pip\n\nThe latest `skyllh` release can be installed from\n[PyPI](https://pypi.org/project/skyllh/) repository:\n```bash\npip install skyllh\n```\n\nThe current development version can be installed using pip:\n```bash\npip install git+https://github.com/icecube/skyllh.git#egg=skyllh\n```\n\nOptionally, the editable package version with a specified reference can be\ninstalled by:\n```bash\npip install -e git+https://github.com/icecube/skyllh.git@[ref]#egg=skyllh\n```\nwhere\n- `-e` is an editable flag\n- `[ref]` is an optional argument containing a specific commit hash, branch name\n  or tag\n\n## Cloning from GitHub\n\nThe `skyllh` (and an optional private [i3skyllh](#i3skyllh)) package can be\ninstalled by cloning the GitHub repository and adding it to the Python path:\n\n```python\nimport sys\n\nsys.path.insert(0, '/path/to/skyllh')\nsys.path.insert(0, '/path/to/i3skyllh')  # optional\n```\n\n# Publications\n\nSeveral publications about the SkyLLH software are available:\n\n- IceCube Collaboration, C. Bellenghi, M. Karl, M. Wolf, et al. PoS ICRC2023 (2023) 1061\n  [DOI](https://doi.org/10.22323/1.444.1061)\n- IceCube Collaboration, T. Kontrimas, M. Wolf, et al. PoS ICRC2021 (2022) 1073\n  [DOI](http://doi.org/10.22323/1.395.1073)\n- IceCube Collaboration, M. Wolf, et al. PoS ICRC2019 (2020) 1035\n  [DOI](https://doi.org/10.22323/1.358.1035)\n\n# Developer Guidelines\n\nThese guidelines should help new developers of SkyLLH to join the development\nprocess easily.\n\n## Code style\n\n- The code follows PEP8 coding style guidelines as close as possible.\n\n- Code lines are maximum 80 characters wide.\n\n- 4 spaces are used as one indentation level.\n\n## Branching\n\n- When implementing a new feature / change, first an issue must be created\n  describing the new feature / change. Then a branch must be created referring\n  to this issue. We recommend the branch name `fix<ISSUE_NUMBER>`, where\n  `<ISSUE_NUMBER>` is the number of the created issue for this feature / change.\n\n- In cases when SkyLLH needs to be updated because of a change in the i3skyllh\n  package (see below), we recommend the branch name `i3skyllh_<ISSUE_NUMBER>`,\n  where `<ISSUE_NUMBER>` is the number of the issue created in the i3skyllh\n  repository. That way the *analysis unit tests* workflow will be able to find\n  the correct skyllh branch corresponding to the i3skyllh change automatically.\n\n## Releases and Versioning\n\n- Release version numbers follow the format `v<YY>.<MAJOR>.<MINOR>`, where\n  `<YY>` is the current year, `<MAJOR>` and `<MINOR>` are the major and minor\n  version numbers of type integer. Example: `v23.2.0`.\n\n- Release candidates follow the same format as releases, but have the additional\n  suffix `.rc<NUMBER>`,  where `<NUMBER>` is an integer starting with 1.\n  Example: `v23.2.0.rc1`\n\n- Before creating the release on github, the version number needs to be updated\n  in the Sphinx documentation: `doc/sphinx/conf.py`.\n\n# i3skyllh\n\nThe [`i3skyllh`](https://github.com/icecube/i3skyllh) package provides\ncomplementary pre-defined common analyses and datasets for the\n[IceCube Neutrino Observatory](https://icecube.wisc.edu) detector in a private\n[repository](https://github.com/icecube/i3skyllh).\n",
    "bugtrack_url": null,
    "license": "GPL-3+",
    "summary": "The SkyLLH framework is an open-source Python3-based package licensed under the GPLv3 license. It provides a modular framework for implementing custom likelihood functions and executing log-likelihood ratio hypothesis tests. The idea is to provide a class structure tied to the mathematical objects of the likelihood functions.",
    "version": "23.2.1",
    "project_urls": {
        "Bug Tracker": "https://github.com/icecube/skyllh/issues",
        "Documentation": "https://icecube.github.io/skyllh",
        "Homepage": "https://github.com/icecube/skyllh",
        "Source Code": "https://github.com/icecube/skyllh"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "a5c272dc3441a4efa1c6353652bdb1bb2fb90be456f1e19e32eb92ebf723b5e9",
                "md5": "ff09a45c465f3cc23fdaccc3cb20ef9b",
                "sha256": "98a097b5613d16f8a6f8e7f687a2507e0413c5094e74055149d3f9a287004d29"
            },
            "downloads": -1,
            "filename": "skyllh-23.2.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "ff09a45c465f3cc23fdaccc3cb20ef9b",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 363015,
            "upload_time": "2023-11-23T14:27:17",
            "upload_time_iso_8601": "2023-11-23T14:27:17.796568Z",
            "url": "https://files.pythonhosted.org/packages/a5/c2/72dc3441a4efa1c6353652bdb1bb2fb90be456f1e19e32eb92ebf723b5e9/skyllh-23.2.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "3c3022313ceea441c74b4c2c0d796bd87ae16b388856c8e3aaa9ded643d4b933",
                "md5": "575031c5d51ce3d8999dd7c261fb4228",
                "sha256": "580891f0747f4c92d4d53f8faebffa24e3c0cd347bc2a3974498509562c87825"
            },
            "downloads": -1,
            "filename": "skyllh-23.2.1.tar.gz",
            "has_sig": false,
            "md5_digest": "575031c5d51ce3d8999dd7c261fb4228",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 326483,
            "upload_time": "2023-11-23T14:27:19",
            "upload_time_iso_8601": "2023-11-23T14:27:19.861373Z",
            "url": "https://files.pythonhosted.org/packages/3c/30/22313ceea441c74b4c2c0d796bd87ae16b388856c8e3aaa9ded643d4b933/skyllh-23.2.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-11-23 14:27:19",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "icecube",
    "github_project": "skyllh",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [
        {
            "name": "astropy",
            "specs": []
        },
        {
            "name": "numpy",
            "specs": []
        },
        {
            "name": "pyarrow",
            "specs": []
        },
        {
            "name": "scipy",
            "specs": []
        },
        {
            "name": "iminuit",
            "specs": []
        },
        {
            "name": "matplotlib",
            "specs": []
        },
        {
            "name": "tqdm",
            "specs": []
        }
    ],
    "lcname": "skyllh"
}
        
Elapsed time: 0.15935s