sopnmf


Namesopnmf JSON
Version 0.0.4 PyPI version JSON
download
home_pagehttps://github.com/anbai106/SOPNMF
SummaryStochastic Orthogonal Projective Non-negative Matrix Factorization
upload_time2023-09-24 14:51:19
maintainer
docs_urlNone
authorjunhao.wen
requires_python
license
keywords
VCS
bugtrack_url
requirements numpy scipy pandas nibabel tensorboardX pytorch
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <h1 align="center">
  <a href="https://anbai106.github.io/SOPNMF/">
    <img src="https://anbai106.github.io/SOPNMF/images/sopnmf.png" alt="SOPNMF Logo" width="120" height="120">
  </a>
  <br/>
  SOPNMF
</h1>

<p align="center"><strong>Stochastic orthogonally projective non-negative matrix factorization</strong></p>

<p align="center">
  <a href="https://anbai106.github.io/SOPNMF/">Documentation</a>
</p>

## About the project
**SOPNMF** is the python implementation of the Matlab version of Orthogonal Projective Non-negative Matrix Factorization: [brainparts](https://github.com/asotiras/brainparts), and its stochastic extension.

> :warning: **The documentation of this software is currently under development**

## Citing this work
> Junhao, W.E.N., Abdulkadir, A., Satterthwaite, T.D., Robert-Fitzgerald, T., Chen, J., Schnack, H., Zanetti, M., Meisenzahl, E., Busatto, G., Crespo-Facorro, B. and Pantelis, C., 2022. **Novel genomic loci and pathways influence patterns of structural covariance in the human brain**. medRxiv. - [In review](https://www.medrxiv.org/content/10.1101/2022.07.20.22277727v1)

> Sotiras, A., Resnick, S.M. and Davatzikos, C., 2015. **Finding imaging patterns of structural covariance via non-negative matrix factorization**. Neuroimage, 108, pp.1-16. [doi:10.1016/j.neuroimage.2014.11.045](https://www.sciencedirect.com/science/article/pii/S1053811914009756?via%3Dihub)

## Publications around SOPNMF
> Wen, J., Varol, E., Sotiras, A., Yang, Z., Chand, G.B., Erus, G., Shou, H., Abdulkadir, A., Hwang, G., Dwyer, D.B. and Pigoni, A., 2022. Multi-scale semi-supervised clustering of brain images: deriving disease subtypes. Medical Image Analysis, 75, p.102304. - [Link](https://scholar.google.com/citations?view_op=view_citation&hl=en&user=4Wq_FukAAAAJ&sortby=pubdate&citation_for_view=4Wq_FukAAAAJ:9ZlFYXVOiuMC)



            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/anbai106/SOPNMF",
    "name": "sopnmf",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "",
    "author": "junhao.wen",
    "author_email": "junhao.wen89@email.com",
    "download_url": "https://files.pythonhosted.org/packages/bc/53/35afc31368e77f86809b239fc77d9315b4cedefe1abbd95f697736ed2bf8/sopnmf-0.0.4.tar.gz",
    "platform": null,
    "description": "<h1 align=\"center\">\n  <a href=\"https://anbai106.github.io/SOPNMF/\">\n    <img src=\"https://anbai106.github.io/SOPNMF/images/sopnmf.png\" alt=\"SOPNMF Logo\" width=\"120\" height=\"120\">\n  </a>\n  <br/>\n  SOPNMF\n</h1>\n\n<p align=\"center\"><strong>Stochastic orthogonally projective non-negative matrix factorization</strong></p>\n\n<p align=\"center\">\n  <a href=\"https://anbai106.github.io/SOPNMF/\">Documentation</a>\n</p>\n\n## About the project\n**SOPNMF** is the python implementation of the Matlab version of Orthogonal Projective Non-negative Matrix Factorization: [brainparts](https://github.com/asotiras/brainparts), and its stochastic extension.\n\n> :warning: **The documentation of this software is currently under development**\n\n## Citing this work\n> Junhao, W.E.N., Abdulkadir, A., Satterthwaite, T.D., Robert-Fitzgerald, T., Chen, J., Schnack, H., Zanetti, M., Meisenzahl, E., Busatto, G., Crespo-Facorro, B. and Pantelis, C., 2022. **Novel genomic loci and pathways influence patterns of structural covariance in the human brain**. medRxiv. - [In review](https://www.medrxiv.org/content/10.1101/2022.07.20.22277727v1)\n\n> Sotiras, A., Resnick, S.M. and Davatzikos, C., 2015. **Finding imaging patterns of structural covariance via non-negative matrix factorization**. Neuroimage, 108, pp.1-16. [doi:10.1016/j.neuroimage.2014.11.045](https://www.sciencedirect.com/science/article/pii/S1053811914009756?via%3Dihub)\n\n## Publications around SOPNMF\n> Wen, J., Varol, E., Sotiras, A., Yang, Z., Chand, G.B., Erus, G., Shou, H., Abdulkadir, A., Hwang, G., Dwyer, D.B. and Pigoni, A., 2022. Multi-scale semi-supervised clustering of brain images: deriving disease subtypes. Medical Image Analysis, 75, p.102304. - [Link](https://scholar.google.com/citations?view_op=view_citation&hl=en&user=4Wq_FukAAAAJ&sortby=pubdate&citation_for_view=4Wq_FukAAAAJ:9ZlFYXVOiuMC)\n\n\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "Stochastic Orthogonal Projective Non-negative Matrix Factorization",
    "version": "0.0.4",
    "project_urls": {
        "Homepage": "https://github.com/anbai106/SOPNMF"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "c6c5b90a3cf611437eadb597e7649af75f24fc963dd477606f2ded2e6a741cee",
                "md5": "62485c75a569308a60bbb193554b1962",
                "sha256": "0f9cfb0ece02b5806541e7bc14220422f9dc84444f5525c9bc86f099f94a5864"
            },
            "downloads": -1,
            "filename": "sopnmf-0.0.4-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "62485c75a569308a60bbb193554b1962",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 21914,
            "upload_time": "2023-09-24T14:51:17",
            "upload_time_iso_8601": "2023-09-24T14:51:17.493872Z",
            "url": "https://files.pythonhosted.org/packages/c6/c5/b90a3cf611437eadb597e7649af75f24fc963dd477606f2ded2e6a741cee/sopnmf-0.0.4-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "bc5335afc31368e77f86809b239fc77d9315b4cedefe1abbd95f697736ed2bf8",
                "md5": "df3e41319ee7c9056ec9ae3d72ddeb6f",
                "sha256": "6fb0477d625e33ce2038c08787577d7ab45ed318c47733372c13f68a60e7ffd2"
            },
            "downloads": -1,
            "filename": "sopnmf-0.0.4.tar.gz",
            "has_sig": false,
            "md5_digest": "df3e41319ee7c9056ec9ae3d72ddeb6f",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 18866,
            "upload_time": "2023-09-24T14:51:19",
            "upload_time_iso_8601": "2023-09-24T14:51:19.111944Z",
            "url": "https://files.pythonhosted.org/packages/bc/53/35afc31368e77f86809b239fc77d9315b4cedefe1abbd95f697736ed2bf8/sopnmf-0.0.4.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-09-24 14:51:19",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "anbai106",
    "github_project": "SOPNMF",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [
        {
            "name": "numpy",
            "specs": [
                [
                    "==",
                    "1.17.2"
                ]
            ]
        },
        {
            "name": "scipy",
            "specs": [
                [
                    "==",
                    "1.3.1"
                ]
            ]
        },
        {
            "name": "pandas",
            "specs": []
        },
        {
            "name": "nibabel",
            "specs": []
        },
        {
            "name": "tensorboardX",
            "specs": []
        },
        {
            "name": "pytorch",
            "specs": []
        }
    ],
    "lcname": "sopnmf"
}
        
Elapsed time: 0.12497s