spci


Namespci JSON
Version 1.1.4 PyPI version JSON
download
home_pagehttps://github.com/DrrDom/spci
SummarySPCI: structural and physicochemical interpretation of QSAR models
upload_time2024-11-04 08:45:28
maintainerNone
docs_urlNone
authorPavel Polishchuk
requires_python>=3.6
licenseNone
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # SPCI

Automatic tool for mining structure-property relationships from chemical data sets

#### Description

Retrieves structure-property relationship from data sets in a chemically meaningful way.  
Returns estimated contributions of fragments to the investigated property of compounds from a data set and can estimate contribution of different physicochemical factors as well.

#### Installation

`pip install spci`

#### Features

1. Easy to use straightforward workflow with GUI.
2. Automatic model building and cross-validation.
3. Build models for imbalanced data set using the multiple oversampling approach.
4. Prediction with built models.
5. Several fragmentation schemes to compute fragment contributions of:
  - common functional groups and rings;  
  - Murcko scaffolds;  
  - user-defined fragments;  
  - automatically generated fragments (based on SMARTS pattern matching broken bonds);  
  - per atom fragmentation.

#### Visualization and analysis of results

1. Built-in visualization.
2. rspci - R package for custom visualization and analysis (https://github.com/DrrDom/rspci)
3. Online tool for visualization, plot customization and figure downloading (http://158.194.101.252:3838/spci-vis/). Demo version is here (http://158.194.101.252:3838/spci-vis-demo/)
4. Per atom contributions can be visualized with RDKit similarity maps.

#### Manual

The short manual is included.

#### Citation

1.	Polishchuk, P. G.; Kuz'min, V. E.; Artemenko, A. G.; Muratov, E. N., Universal Approach for Structural Interpretation of Qsar/Qspr Models. Mol. Inf. 2013, 32, 843-853 - http://dx.doi.org/10.1002/minf.201300029 - structural interpretation.
2.	Polishchuk, P.; Tinkov, O.; Khristova, T.; Ognichenko, L.; Kosinskaya, A.; Varnek, A.; Kuz’min, V., Structural and Physico-Chemical Interpretation (SPCI) of QSAR Models and Its Comparison with Matched Molecular Pair Analysis. J. Chem. Inf. Model. 2016, 56, 1455-1469 - http://dx.doi.org/10.1021/acs.jcim.6b00371 - integrated structural and physicochemical interpretation.

#### Home page

http://qsar4u.com/pages/sirms_qsar.php

#### License

LGPLv3

#### What's new

1.0.0 (03.07.2018)
- RDKit is used as a backend instead of Indigo
- multiple undersampling was implemented
- changed default descriptors, that make this version incompatible with previous models and vice versa.
- updated sirms descriptors
- many small fixes and improvements

1.1.0 (07.02.2021)
- added support of RDKit descriptors
- added per atom fragmentation
- reorganized as a Python package
- console scripts have prefix spci_*

1.1.1 (23.03.2021)
- changed license to LGPLv3
- fixed arguments in scpi_descriptors

1.1.2 (28.06.2023)
- add max_size argument to find_frag_auto_rdkit.py to limit maximum size of output fragments
- skip fragments with H as a context from output of find_frag_auto_rdkit.py
- update README and installation notes

1.1.4 (04.11.2024)
- fix calculation of fragment contributions if initial molecules do not contain hydrogens 

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/DrrDom/spci",
    "name": "spci",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": null,
    "keywords": null,
    "author": "Pavel Polishchuk",
    "author_email": "pavel_polishchuk@ukr.net",
    "download_url": "https://files.pythonhosted.org/packages/ce/15/885ebd7b398b7d491ddec994087220fb4e3c529b9f2b3f8412a284e3375a/spci-1.1.4.tar.gz",
    "platform": null,
    "description": "# SPCI\n\nAutomatic tool for mining structure-property relationships from chemical data sets\n\n#### Description\n\nRetrieves structure-property relationship from data sets in a chemically meaningful way.  \nReturns estimated contributions of fragments to the investigated property of compounds from a data set and can estimate contribution of different physicochemical factors as well.\n\n#### Installation\n\n`pip install spci`\n\n#### Features\n\n1. Easy to use straightforward workflow with GUI.\n2. Automatic model building and cross-validation.\n3. Build models for imbalanced data set using the multiple oversampling approach.\n4. Prediction with built models.\n5. Several fragmentation schemes to compute fragment contributions of:\n  - common functional groups and rings;  \n  - Murcko scaffolds;  \n  - user-defined fragments;  \n  - automatically generated fragments (based on SMARTS pattern matching broken bonds);  \n  - per atom fragmentation.\n\n#### Visualization and analysis of results\n\n1. Built-in visualization.\n2. rspci - R package for custom visualization and analysis (https://github.com/DrrDom/rspci)\n3. Online tool for visualization, plot customization and figure downloading (http://158.194.101.252:3838/spci-vis/). Demo version is here (http://158.194.101.252:3838/spci-vis-demo/)\n4. Per atom contributions can be visualized with RDKit similarity maps.\n\n#### Manual\n\nThe short manual is included.\n\n#### Citation\n\n1.\tPolishchuk, P. G.; Kuz'min, V. E.; Artemenko, A. G.; Muratov, E. N., Universal Approach for Structural Interpretation of Qsar/Qspr Models. Mol. Inf. 2013, 32, 843-853 - http://dx.doi.org/10.1002/minf.201300029 - structural interpretation.\n2.\tPolishchuk, P.; Tinkov, O.; Khristova, T.; Ognichenko, L.; Kosinskaya, A.; Varnek, A.; Kuz\u2019min, V., Structural and Physico-Chemical Interpretation (SPCI) of QSAR Models and Its Comparison with Matched Molecular Pair Analysis. J. Chem. Inf. Model. 2016, 56, 1455-1469 - http://dx.doi.org/10.1021/acs.jcim.6b00371 - integrated structural and physicochemical interpretation.\n\n#### Home page\n\nhttp://qsar4u.com/pages/sirms_qsar.php\n\n#### License\n\nLGPLv3\n\n#### What's new\n\n1.0.0 (03.07.2018)\n- RDKit is used as a backend instead of Indigo\n- multiple undersampling was implemented\n- changed default descriptors, that make this version incompatible with previous models and vice versa.\n- updated sirms descriptors\n- many small fixes and improvements\n\n1.1.0 (07.02.2021)\n- added support of RDKit descriptors\n- added per atom fragmentation\n- reorganized as a Python package\n- console scripts have prefix spci_*\n\n1.1.1 (23.03.2021)\n- changed license to LGPLv3\n- fixed arguments in scpi_descriptors\n\n1.1.2 (28.06.2023)\n- add max_size argument to find_frag_auto_rdkit.py to limit maximum size of output fragments\n- skip fragments with H as a context from output of find_frag_auto_rdkit.py\n- update README and installation notes\n\n1.1.4 (04.11.2024)\n- fix calculation of fragment contributions if initial molecules do not contain hydrogens \n",
    "bugtrack_url": null,
    "license": null,
    "summary": "SPCI: structural and physicochemical interpretation of QSAR models",
    "version": "1.1.4",
    "project_urls": {
        "Homepage": "https://github.com/DrrDom/spci"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "1facab5307425262cd0d66faf403300b8bff2025e3147b06d1e83f9370d23b44",
                "md5": "28938d87f1e91c9f7af9a19687efd7e3",
                "sha256": "2cba16fa9585cc355db7d614db5dd096d1d188fb2825b15c411ea7afa6725517"
            },
            "downloads": -1,
            "filename": "spci-1.1.4-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "28938d87f1e91c9f7af9a19687efd7e3",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.6",
            "size": 55861,
            "upload_time": "2024-11-04T08:45:26",
            "upload_time_iso_8601": "2024-11-04T08:45:26.688926Z",
            "url": "https://files.pythonhosted.org/packages/1f/ac/ab5307425262cd0d66faf403300b8bff2025e3147b06d1e83f9370d23b44/spci-1.1.4-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "ce15885ebd7b398b7d491ddec994087220fb4e3c529b9f2b3f8412a284e3375a",
                "md5": "5495c07ab3aebf377e4c8d76941e48c7",
                "sha256": "2325a506b812991244a170dcaede4b6dcb50a5935f1f1e181fe6e407e7aa5e28"
            },
            "downloads": -1,
            "filename": "spci-1.1.4.tar.gz",
            "has_sig": false,
            "md5_digest": "5495c07ab3aebf377e4c8d76941e48c7",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 47368,
            "upload_time": "2024-11-04T08:45:28",
            "upload_time_iso_8601": "2024-11-04T08:45:28.206086Z",
            "url": "https://files.pythonhosted.org/packages/ce/15/885ebd7b398b7d491ddec994087220fb4e3c529b9f2b3f8412a284e3375a/spci-1.1.4.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-04 08:45:28",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "DrrDom",
    "github_project": "spci",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "spci"
}
        
Elapsed time: 1.20331s