statesegmentation


Namestatesegmentation JSON
Version 0.0.6 PyPI version JSON
download
home_pagehttps://github.com/lgeerligs/statesegmentation
SummaryDetecting neural state transitions underlying event segmentation
upload_time2023-09-12 01:31:01
maintainer
docs_urlNone
authorLinda Geerligs, Umut Güçlü
requires_python
licenseMIT
keywords
VCS
bugtrack_url
requirements numpy scipy
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # statesegmentation

The statesegmentation package contains the implementation of a a greedy search algorithm (GSBS) to
segment a timeseries into states with stable activity patterns.
     
You can find more information about the method here:
Geerligs L., van Gerven M., Güçlü U. (2021) Detecting neural state transitions underlying event segmentation.
Neuroimage. https://doi.org/10.1016/j.neuroimage.2021.118085

The method has since been improved as described here:
Geerligs L., Gözükara D., Oetringer D., Campbell K., van Gerven M., Güçlü U. (2022)
A partially nested cortical hierarchy of neural states underlies event segmentation in the human brain.
BioRxiv. https://doi.org/10.1101/2021.02.05.429165

The package can be installed using: pip install statesegmentation

An example use case can be found in the examples directory.



            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/lgeerligs/statesegmentation",
    "name": "statesegmentation",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "",
    "author": "Linda Geerligs, Umut G\u00fc\u00e7l\u00fc",
    "author_email": "",
    "download_url": "https://files.pythonhosted.org/packages/0a/b0/03fdbf7c1544489ff4ec5c85ce9a9a8bafdf11b58a8a2fcb4bdb85bfbe6d/statesegmentation-0.0.6.tar.gz",
    "platform": null,
    "description": "# statesegmentation\n\nThe statesegmentation package contains the implementation of a a greedy search algorithm (GSBS) to\nsegment a timeseries into states with stable activity patterns.\n     \nYou can find more information about the method here:\nGeerligs L., van Gerven M., G\u00fc\u00e7l\u00fc U. (2021) Detecting neural state transitions underlying event segmentation.\nNeuroimage. https://doi.org/10.1016/j.neuroimage.2021.118085\n\nThe method has since been improved as described here:\nGeerligs L., G\u00f6z\u00fckara D., Oetringer D., Campbell K., van Gerven M., G\u00fc\u00e7l\u00fc U. (2022)\nA partially nested cortical hierarchy of neural states underlies event segmentation in the human brain.\nBioRxiv. https://doi.org/10.1101/2021.02.05.429165\n\nThe package can be installed using: pip install statesegmentation\n\nAn example use case can be found in the examples directory.\n\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Detecting neural state transitions underlying event segmentation",
    "version": "0.0.6",
    "project_urls": {
        "Homepage": "https://github.com/lgeerligs/statesegmentation"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "1f9f876f141f30d65ca67cc8fa54ca7c08aa6972a0c603b1b718b1f0e8584fe1",
                "md5": "3d27e78571f3fd253cd27c64891afe5d",
                "sha256": "9f974297b4de5290dc68418350b3785c257e577f88d3971584428d2da7cebe8e"
            },
            "downloads": -1,
            "filename": "statesegmentation-0.0.6-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "3d27e78571f3fd253cd27c64891afe5d",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 7653,
            "upload_time": "2023-09-12T01:31:00",
            "upload_time_iso_8601": "2023-09-12T01:31:00.312831Z",
            "url": "https://files.pythonhosted.org/packages/1f/9f/876f141f30d65ca67cc8fa54ca7c08aa6972a0c603b1b718b1f0e8584fe1/statesegmentation-0.0.6-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "0ab003fdbf7c1544489ff4ec5c85ce9a9a8bafdf11b58a8a2fcb4bdb85bfbe6d",
                "md5": "f5828cd4cb010b59e5a646d379696985",
                "sha256": "e31be3a16b9513c2ad2fded0610e004098d5b201643d573e098bb65922f9a9e4"
            },
            "downloads": -1,
            "filename": "statesegmentation-0.0.6.tar.gz",
            "has_sig": false,
            "md5_digest": "f5828cd4cb010b59e5a646d379696985",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 7133,
            "upload_time": "2023-09-12T01:31:01",
            "upload_time_iso_8601": "2023-09-12T01:31:01.977084Z",
            "url": "https://files.pythonhosted.org/packages/0a/b0/03fdbf7c1544489ff4ec5c85ce9a9a8bafdf11b58a8a2fcb4bdb85bfbe6d/statesegmentation-0.0.6.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-09-12 01:31:01",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "lgeerligs",
    "github_project": "statesegmentation",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [
        {
            "name": "numpy",
            "specs": [
                [
                    "~=",
                    "1.18.1"
                ]
            ]
        },
        {
            "name": "scipy",
            "specs": [
                [
                    "~=",
                    "1.4.1"
                ]
            ]
        }
    ],
    "lcname": "statesegmentation"
}
        
Elapsed time: 0.32941s