| Name | statlab JSON |
| Version |
0.0.2
JSON |
| download |
| home_page | None |
| Summary | A python package offering a variety of statistical and machine learning tools. |
| upload_time | 2024-09-05 14:27:46 |
| maintainer | None |
| docs_url | None |
| author | None |
| requires_python | >=3.8 |
| license | None |
| keywords |
|
| VCS |
 |
| bugtrack_url |
|
| requirements |
No requirements were recorded.
|
| Travis-CI |
No Travis.
|
| coveralls test coverage |
No coveralls.
|
# statlab
[](https://pypi.org/project/statlab)
statlab is a new Python package offering a variety of statistical and machine learning tools.
This package is being developed by Noam Rotenberg and Zan Chaudhry.
# Products
## "ord" ordinal classification tools
Submodule contains:
+ TreeOrdinalClassifier
+ SubtractionOrdinalClassifier
+ Functions to calculate classification metrics on ordinal data
Submodule developed by: Noam Rotenberg, Andreia Faria, Brian Caffo
Examples coming soon!
# Usage
Install: ``!pip install statlab``
Import a single module: ``import statlab.ord`` - imports only ord
Import all modules: ``from statlab.all import *`` - can access any function without prefixes, e.g., ``TreeOrdinalClassifier(base_clf)``
Specific example:
```
!pip install statlab
import statlab.ord
base_clf = # some sklearn-style classifier
clf = statlab.ord.TreeOrdinalClassifier(base_clf)
```
# Future work:
+ Dataset mislabeling detection and classification
+ Naive Bayes classifier using nonparametric statistics
+ Automated nonlinear feature tuning
Raw data
{
"_id": null,
"home_page": null,
"name": "statlab",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": null,
"author": null,
"author_email": "Noam Rotenberg <nrotenb1@alumni.jh.edu>, Zan Chaudhry <zchaudh3@alumni.jh.edu>",
"download_url": "https://files.pythonhosted.org/packages/a2/e1/93be10179fc0f1cb6c516b40324967916f672a6d6eecc9d0d011a217836f/statlab-0.0.2.tar.gz",
"platform": null,
"description": "\n# statlab\n[](https://pypi.org/project/statlab)\n\n\nstatlab is a new Python package offering a variety of statistical and machine learning tools.\n\nThis package is being developed by Noam Rotenberg and Zan Chaudhry.\n\n\n# Products\n\n## \"ord\" ordinal classification tools\nSubmodule contains:\n+ TreeOrdinalClassifier\n+ SubtractionOrdinalClassifier\n+ Functions to calculate classification metrics on ordinal data\n\nSubmodule developed by: Noam Rotenberg, Andreia Faria, Brian Caffo\n\nExamples coming soon!\n\n\n# Usage\n\nInstall: ``!pip install statlab``\n\nImport a single module: ``import statlab.ord`` - imports only ord\n\nImport all modules: ``from statlab.all import *`` - can access any function without prefixes, e.g., ``TreeOrdinalClassifier(base_clf)``\n\nSpecific example:\n```\n!pip install statlab\nimport statlab.ord\nbase_clf = # some sklearn-style classifier\nclf = statlab.ord.TreeOrdinalClassifier(base_clf)\n```\n\n# Future work:\n\n+ Dataset mislabeling detection and classification\n+ Naive Bayes classifier using nonparametric statistics\n+ Automated nonlinear feature tuning\n",
"bugtrack_url": null,
"license": null,
"summary": "A python package offering a variety of statistical and machine learning tools.",
"version": "0.0.2",
"project_urls": {
"Homepage": "https://github.com/noamrotenberg/statlab"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "eba52c272b8ed60f5689d022101a0542d56ece993380d21433f63277e8801d1b",
"md5": "362dafd8bd95f0f36f80a57ee50fd6ac",
"sha256": "29117cc8cb4918440ee5e4acf57a29a767b1fbe0913ff6cd323f987394bae9f6"
},
"downloads": -1,
"filename": "statlab-0.0.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "362dafd8bd95f0f36f80a57ee50fd6ac",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 6098,
"upload_time": "2024-09-05T14:27:44",
"upload_time_iso_8601": "2024-09-05T14:27:44.786055Z",
"url": "https://files.pythonhosted.org/packages/eb/a5/2c272b8ed60f5689d022101a0542d56ece993380d21433f63277e8801d1b/statlab-0.0.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "a2e193be10179fc0f1cb6c516b40324967916f672a6d6eecc9d0d011a217836f",
"md5": "4491acfc554228c1dbc3d4433ae71573",
"sha256": "604d54e24be5d9e2adf92c54dbdc800d93deabb8b1d54b5d47dc49dce23dfd4c"
},
"downloads": -1,
"filename": "statlab-0.0.2.tar.gz",
"has_sig": false,
"md5_digest": "4491acfc554228c1dbc3d4433ae71573",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 5256,
"upload_time": "2024-09-05T14:27:46",
"upload_time_iso_8601": "2024-09-05T14:27:46.554679Z",
"url": "https://files.pythonhosted.org/packages/a2/e1/93be10179fc0f1cb6c516b40324967916f672a6d6eecc9d0d011a217836f/statlab-0.0.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-09-05 14:27:46",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "noamrotenberg",
"github_project": "statlab",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "statlab"
}