taufactor


Nametaufactor JSON
Version 1.1.0 PyPI version JSON
download
home_pagehttps://github.com/tldr-group/taufactor
SummaryTauFactor is an application for calculating tortuosity factors from tomographic data
upload_time2023-07-24 09:13:42
maintainer
docs_urlNone
authorIsaac Squires
requires_python>=3.5
licenseMIT license
keywords taufactor
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # TauFactor

TauFactor is an application for calculating tortuosity factors from tomographic data.

-   Free software: MIT license
-   Documentation: [https://taufactor.readthedocs.io](https://taufactor.readthedocs.io).

<p align="center">
<img src="https://tldr-group.github.io/static/media/tau_example.2c29eaf9.png" alt="TauFactor" width="324" height="324">
</p>
<p align="center">
<a href="https://pypi.python.org/pypi/taufactor">
        <img src="https://img.shields.io/pypi/v/taufactor.svg"
            alt="PyPI"></a>
<a href="https://taufactor.readthedocs.io/en/latest/?badge=latest">
        <img src="https://readthedocs.org/projects/taufactor/badge/?version=latest"
            alt="ReadTheDocs"></a>
<a href="https://opensource.org/licenses/MIT">
        <img src="https://img.shields.io/badge/License-MIT-yellow.svg"
            alt="MIT LICENSE"></a>
<img src="https://github.com/tldr-group/taufactor/actions/workflows/taufactor.yml/badge.svg"
        alt="github actions">

</p>

## Requirements

Before installing taufactor, [download the most recent version of PyTorch](https://pytorch.org/get-started/locally/). Ensure you have `pytorch>=1.10` installed in your Python environment.

For example, for a Linux machine with CUDA GPU

```
conda install pytorch pytorch-cuda=11.7 -c pytorch -c nvidia
```

## Quickstart

To install TauFactor via PyPI

```
pip install taufactor
```

To extract effective diffusivity and tortuosity factor from your data:

```python
import taufactor as tau
import tifffile

# load image
img = tifffile.imread('path/filename')
# ensure 1s for conductive phase and 0s otherwise.

# create a solver object with loaded image
s = tau.Solver(img)

# call solve function
s.solve()

# view effective diffusivity and tau
print(s.D_eff, s.tau)

```

## Tests

To run unit tests navigate to the root directory and run

```
pytest
```

## Credits

This package was created by the [tldr group](https://tldr-group.github.io/) at the Dyson School of Design Engineering, Imperial College London.

## TauFactor MATLAB

The package in this repository refers to a Python implementation of the TauFactor solver. There is a deprecated [MATLAB implementation](https://www.mathworks.com/matlabcentral/fileexchange/57956-taufactor), which is no longer maintained.


# History

## 1.1.0 (2023-07-24)

---

-   Added comments from reviewers
-   Added examples to documentation
-   Added API documentation
-   Fix test times on comparison

## 1.0.0 (2023-03-23)

---

-   Migrated to PyTorch from CuPy
-   New convergence criteria
-   New documentation style
-   CI testing
-   Includes TauFactor paper

## 0.1.4 (2022-07-11)

---

-   Add TauE solver
-   Add triple phase boundary calculations
-   Fix cuboids not converging
-   Fix convergence messaging

## 0.1.3 (2021-03-25)

---

-   Hotfix code in taufactor.py

## 0.1.2 (2021-03-25)

---

-   Added multi-phase and periodic solvers and metrics calculations

## 0.1.1 (2021-02-10)

---

-   Removed CuPy from requirements and added installation instructions to README

## 0.1.0 (2021-02-08)

---

-   First release on PyPI.

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/tldr-group/taufactor",
    "name": "taufactor",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.5",
    "maintainer_email": "",
    "keywords": "taufactor",
    "author": "Isaac Squires",
    "author_email": "is21@ic.ac.uk",
    "download_url": "https://files.pythonhosted.org/packages/38/21/1e767d7c73fa7134eb780ea48d47611b56ac3d73bf2b6b6f793050b8bb56/taufactor-1.1.0.tar.gz",
    "platform": null,
    "description": "# TauFactor\n\nTauFactor is an application for calculating tortuosity factors from tomographic data.\n\n-   Free software: MIT license\n-   Documentation: [https://taufactor.readthedocs.io](https://taufactor.readthedocs.io).\n\n<p align=\"center\">\n<img src=\"https://tldr-group.github.io/static/media/tau_example.2c29eaf9.png\" alt=\"TauFactor\" width=\"324\" height=\"324\">\n</p>\n<p align=\"center\">\n<a href=\"https://pypi.python.org/pypi/taufactor\">\n        <img src=\"https://img.shields.io/pypi/v/taufactor.svg\"\n            alt=\"PyPI\"></a>\n<a href=\"https://taufactor.readthedocs.io/en/latest/?badge=latest\">\n        <img src=\"https://readthedocs.org/projects/taufactor/badge/?version=latest\"\n            alt=\"ReadTheDocs\"></a>\n<a href=\"https://opensource.org/licenses/MIT\">\n        <img src=\"https://img.shields.io/badge/License-MIT-yellow.svg\"\n            alt=\"MIT LICENSE\"></a>\n<img src=\"https://github.com/tldr-group/taufactor/actions/workflows/taufactor.yml/badge.svg\"\n        alt=\"github actions\">\n\n</p>\n\n## Requirements\n\nBefore installing taufactor, [download the most recent version of PyTorch](https://pytorch.org/get-started/locally/). Ensure you have `pytorch>=1.10` installed in your Python environment.\n\nFor example, for a Linux machine with CUDA GPU\n\n```\nconda install pytorch pytorch-cuda=11.7 -c pytorch -c nvidia\n```\n\n## Quickstart\n\nTo install TauFactor via PyPI\n\n```\npip install taufactor\n```\n\nTo extract effective diffusivity and tortuosity factor from your data:\n\n```python\nimport taufactor as tau\nimport tifffile\n\n# load image\nimg = tifffile.imread('path/filename')\n# ensure 1s for conductive phase and 0s otherwise.\n\n# create a solver object with loaded image\ns = tau.Solver(img)\n\n# call solve function\ns.solve()\n\n# view effective diffusivity and tau\nprint(s.D_eff, s.tau)\n\n```\n\n## Tests\n\nTo run unit tests navigate to the root directory and run\n\n```\npytest\n```\n\n## Credits\n\nThis package was created by the [tldr group](https://tldr-group.github.io/) at the Dyson School of Design Engineering, Imperial College London.\n\n## TauFactor MATLAB\n\nThe package in this repository refers to a Python implementation of the TauFactor solver. There is a deprecated [MATLAB implementation](https://www.mathworks.com/matlabcentral/fileexchange/57956-taufactor), which is no longer maintained.\n\n\n# History\n\n## 1.1.0 (2023-07-24)\n\n---\n\n-   Added comments from reviewers\n-   Added examples to documentation\n-   Added API documentation\n-   Fix test times on comparison\n\n## 1.0.0 (2023-03-23)\n\n---\n\n-   Migrated to PyTorch from CuPy\n-   New convergence criteria\n-   New documentation style\n-   CI testing\n-   Includes TauFactor paper\n\n## 0.1.4 (2022-07-11)\n\n---\n\n-   Add TauE solver\n-   Add triple phase boundary calculations\n-   Fix cuboids not converging\n-   Fix convergence messaging\n\n## 0.1.3 (2021-03-25)\n\n---\n\n-   Hotfix code in taufactor.py\n\n## 0.1.2 (2021-03-25)\n\n---\n\n-   Added multi-phase and periodic solvers and metrics calculations\n\n## 0.1.1 (2021-02-10)\n\n---\n\n-   Removed CuPy from requirements and added installation instructions to README\n\n## 0.1.0 (2021-02-08)\n\n---\n\n-   First release on PyPI.\n",
    "bugtrack_url": null,
    "license": "MIT license",
    "summary": "TauFactor is an application for calculating tortuosity factors from tomographic data",
    "version": "1.1.0",
    "project_urls": {
        "Homepage": "https://github.com/tldr-group/taufactor"
    },
    "split_keywords": [
        "taufactor"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "2e663af78a4ffe22e9638ab99f4e61050a6ea56acc18f3f231667c7484a1a174",
                "md5": "21e72f64f08c9a066305f0ae741b2d31",
                "sha256": "dfc364e2101d0860a2aab87e83c91d90f2201d49b2e42d6aed66853e4400446d"
            },
            "downloads": -1,
            "filename": "taufactor-1.1.0-py2.py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "21e72f64f08c9a066305f0ae741b2d31",
            "packagetype": "bdist_wheel",
            "python_version": "py2.py3",
            "requires_python": ">=3.5",
            "size": 13302,
            "upload_time": "2023-07-24T09:13:39",
            "upload_time_iso_8601": "2023-07-24T09:13:39.699227Z",
            "url": "https://files.pythonhosted.org/packages/2e/66/3af78a4ffe22e9638ab99f4e61050a6ea56acc18f3f231667c7484a1a174/taufactor-1.1.0-py2.py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "38211e767d7c73fa7134eb780ea48d47611b56ac3d73bf2b6b6f793050b8bb56",
                "md5": "a85d113f341b637077e451462b59a2c6",
                "sha256": "65a4de781c4e0523bfab6966f498f8d8205ec384b641115e7de2b8ec8afae61c"
            },
            "downloads": -1,
            "filename": "taufactor-1.1.0.tar.gz",
            "has_sig": false,
            "md5_digest": "a85d113f341b637077e451462b59a2c6",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.5",
            "size": 575138,
            "upload_time": "2023-07-24T09:13:42",
            "upload_time_iso_8601": "2023-07-24T09:13:42.152048Z",
            "url": "https://files.pythonhosted.org/packages/38/21/1e767d7c73fa7134eb780ea48d47611b56ac3d73bf2b6b6f793050b8bb56/taufactor-1.1.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-07-24 09:13:42",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "tldr-group",
    "github_project": "taufactor",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "tox": true,
    "lcname": "taufactor"
}
        
Elapsed time: 0.40176s