| Name | timed-sparse-matrix JSON |
| Version |
0.1.2
JSON |
| download |
| home_page | None |
| Summary | Loading and saving timed sparse tensors. |
| upload_time | 2024-09-10 20:04:11 |
| maintainer | None |
| docs_url | None |
| author | None |
| requires_python | >=3.7 |
| license | None |
| keywords |
|
| VCS |
 |
| bugtrack_url |
|
| requirements |
No requirements were recorded.
|
| Travis-CI |
No Travis.
|
| coveralls test coverage |
No coveralls.
|
# Timed Sparse Matrices
Save timed sparse matrices and tensors to readable files from Python, MATLAB, and C++.
For detailed description, see https://github.com/nishbo/timed_sparse_matrix.
## Getting Started
This project's code is available on [GitHub](https://github.com/nishbo/timed_sparse_matrix).
### Prerequisites
Software:
- [Python 3.7+/Anaconda](https://www.anaconda.com/products/individual)
- Module dependencies are listed in the [toml](pyproject.toml) file.
### Installation
You can now install from PyPi:
```
py -m pip install timed_sparse_matrix
```
### Install from source
1. Download the [repository](https://github.com/nishbo/timed_sparse_matrix) or clone it using git: `git clone https://github.com/nishbo/timed_sparse_matrix.git`.
2. Open Terminal, Command Line, or the desired Anaconda environment in the project Python folder.
3. Run `py -m pip install .`.
## Examples
TODO. See the `if __name__ == '__main__':` part of timed_sparse_matrix.py.
## Authors
- [**Anton Sobinov**](https://github.com/nishbo)
Raw data
{
"_id": null,
"home_page": null,
"name": "timed-sparse-matrix",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.7",
"maintainer_email": null,
"keywords": null,
"author": null,
"author_email": "Anton R Sobinov <an.sobinov@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/cb/56/b1519daf783be4d649023e0ac5cb149b4d19987eebe510f1d959a55f81ac/timed_sparse_matrix-0.1.2.tar.gz",
"platform": null,
"description": "# Timed Sparse Matrices\r\n\r\nSave timed sparse matrices and tensors to readable files from Python, MATLAB, and C++.\r\n\r\nFor detailed description, see https://github.com/nishbo/timed_sparse_matrix.\r\n\r\n\r\n## Getting Started\r\n\r\nThis project's code is available on [GitHub](https://github.com/nishbo/timed_sparse_matrix).\r\n\r\n\r\n### Prerequisites\r\n\r\nSoftware:\r\n- [Python 3.7+/Anaconda](https://www.anaconda.com/products/individual)\r\n- Module dependencies are listed in the [toml](pyproject.toml) file.\r\n\r\n\r\n### Installation\r\n\r\nYou can now install from PyPi:\r\n\r\n```\r\npy -m pip install timed_sparse_matrix\r\n```\r\n\r\n### Install from source\r\n\r\n1. Download the [repository](https://github.com/nishbo/timed_sparse_matrix) or clone it using git: `git clone https://github.com/nishbo/timed_sparse_matrix.git`.\r\n2. Open Terminal, Command Line, or the desired Anaconda environment in the project Python folder.\r\n3. Run `py -m pip install .`.\r\n\r\n## Examples\r\n\r\nTODO. See the `if __name__ == '__main__':` part of timed_sparse_matrix.py.\r\n\r\n\r\n## Authors\r\n\r\n- [**Anton Sobinov**](https://github.com/nishbo)\r\n",
"bugtrack_url": null,
"license": null,
"summary": "Loading and saving timed sparse tensors.",
"version": "0.1.2",
"project_urls": {
"Homepage": "https://github.com/nishbo/timed_sparse_matrix"
},
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "776117b1fee592fc9ca6b5268466acde67188e988baacbe71e71969bfbf25a2f",
"md5": "c8122769a22adebd14a7f08ab5db2284",
"sha256": "187311bd1100a7e5e5083579e10a2a11bcd3db83155f27a11f9280dd8d0d97a7"
},
"downloads": -1,
"filename": "timed_sparse_matrix-0.1.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "c8122769a22adebd14a7f08ab5db2284",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.7",
"size": 51890,
"upload_time": "2024-09-10T20:04:09",
"upload_time_iso_8601": "2024-09-10T20:04:09.624086Z",
"url": "https://files.pythonhosted.org/packages/77/61/17b1fee592fc9ca6b5268466acde67188e988baacbe71e71969bfbf25a2f/timed_sparse_matrix-0.1.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "cb56b1519daf783be4d649023e0ac5cb149b4d19987eebe510f1d959a55f81ac",
"md5": "00433bd0fcac963753ec5063b0295625",
"sha256": "b278f0965538e1fdb7032f55c920094649c64b834faaa70f6e863339312532f6"
},
"downloads": -1,
"filename": "timed_sparse_matrix-0.1.2.tar.gz",
"has_sig": false,
"md5_digest": "00433bd0fcac963753ec5063b0295625",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.7",
"size": 52814,
"upload_time": "2024-09-10T20:04:11",
"upload_time_iso_8601": "2024-09-10T20:04:11.096799Z",
"url": "https://files.pythonhosted.org/packages/cb/56/b1519daf783be4d649023e0ac5cb149b4d19987eebe510f1d959a55f81ac/timed_sparse_matrix-0.1.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-09-10 20:04:11",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "nishbo",
"github_project": "timed_sparse_matrix",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "timed-sparse-matrix"
}