torchact


Nametorchact JSON
Version 1.1.2 PyPI version JSON
download
home_pagehttps://github.com/kaintels/torchact
SummaryTorchAct, collection of activation function for PyTorch.
upload_time2023-09-25 10:50:29
maintainer
docs_urlNone
authorSeungwoo Han
requires_python>=3.7
license
keywords
VCS
bugtrack_url
requirements numpy numpy torch black pytest-cov pytest typing-extensions myst_parser Sphinx sphinx-rtd-theme
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # torchact

<div align="center">

TorchAct, collection of activation function for PyTorch.

---

| ![image](https://img.shields.io/badge/-Tests:-black?style=flat-square) [![CI](https://github.com/kaintels/torchact/actions/workflows/ci.yml/badge.svg)](https://github.com/kaintels/torchact/actions/workflows/ci.yml) [![codecov](https://codecov.io/gh/kaintels/torchact/branch/main/graph/badge.svg?token=EJMC8R0OOT)](https://codecov.io/gh/kaintels/torchact) [![Read the Docs](https://img.shields.io/readthedocs/torchact)](https://torchact.readthedocs.io/) |
|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
| ![image](https://img.shields.io/badge/-Stable%20Releases:-black?style=flat-square) ![PyPI - Status](https://img.shields.io/pypi/status/torchact) ![PyPI - Python Version](https://img.shields.io/pypi/pyversions/torchact) [![image](https://badge.fury.io/py/torchact.svg)](https://badge.fury.io/py/torchact) [![Downloads](https://static.pepy.tech/badge/torchact)](https://pepy.tech/project/torchact)  
| ![image](https://img.shields.io/badge/-Features:-black?style=flat-square) ![PyTorch](https://img.shields.io/badge/PyTorch-EE4C2C?&logo=PyTorch&logoColor=white) ![PyPI - License](https://img.shields.io/pypi/l/torchact?color=blue) [![image](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)

</div>

## Quick Start

```python
import torch
import torch.nn as nn
import torchact.nn as actnn

model = nn.Sequential(
    nn.Linear(5, 3),
    actnn.ReLU(),
    nn.Linear(3, 1),
    nn.Sigmoid()
)

dummy = torch.rand(1, 5)
print(model(dummy))
```

## Installation

```shell
pip install torchact
```

## How to Contribute

Thanks for your contribution!

There are several steps for contributing.

0. Fork this repo (you can work dev branch.)
1. Install library using `requirements.txt`
2. Write your code in torchact folder.
3. Add your module in `__init__.py` (`__version__` cannot be changed. It will be decided later.)

For example.

```python
from .your_module import Your_Module
__all__ = ("ReLU", "SinLU", "Softmax", "Your_Module")
```

3. If you want to test case, Write test case.

For example.

```python
def test_has_attr():
    for activation_name in __all__:
        if activation_name == "Softmax":
            assert hasattr(str_to_class(activation_name)(), "dim")
        else:
            pass
```

4. Run black style.`black .`
5. Send a PR. Code testing happens automatically. (PYPI is upgraded by the admin himself.)

## Citing TorchAct

To cite this repository:

```
@article{hantorchact,
  title={TorchAct, collection of activation function for PyTorch.},
  author={Seungwoo Han},
  publisher={Engineering Archive},
  doi={10.31224/2988},
  url={https://engrxiv.org/preprint/view/2988}
  year={2023}
}
```

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/kaintels/torchact",
    "name": "torchact",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": "",
    "keywords": "",
    "author": "Seungwoo Han",
    "author_email": "seungwoohan0108@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/9e/44/0d1d4899015b5416e47a0affd659092611adbd1f3a7e496d77e8d9109356/torchact-1.1.2.tar.gz",
    "platform": null,
    "description": "# torchact\r\n\r\n<div align=\"center\">\r\n\r\nTorchAct, collection of activation function for PyTorch.\r\n\r\n---\r\n\r\n| ![image](https://img.shields.io/badge/-Tests:-black?style=flat-square) [![CI](https://github.com/kaintels/torchact/actions/workflows/ci.yml/badge.svg)](https://github.com/kaintels/torchact/actions/workflows/ci.yml) [![codecov](https://codecov.io/gh/kaintels/torchact/branch/main/graph/badge.svg?token=EJMC8R0OOT)](https://codecov.io/gh/kaintels/torchact) [![Read the Docs](https://img.shields.io/readthedocs/torchact)](https://torchact.readthedocs.io/) |\r\n|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------\r\n| ![image](https://img.shields.io/badge/-Stable%20Releases:-black?style=flat-square) ![PyPI - Status](https://img.shields.io/pypi/status/torchact) ![PyPI - Python Version](https://img.shields.io/pypi/pyversions/torchact) [![image](https://badge.fury.io/py/torchact.svg)](https://badge.fury.io/py/torchact) [![Downloads](https://static.pepy.tech/badge/torchact)](https://pepy.tech/project/torchact)  \r\n| ![image](https://img.shields.io/badge/-Features:-black?style=flat-square) ![PyTorch](https://img.shields.io/badge/PyTorch-EE4C2C?&logo=PyTorch&logoColor=white) ![PyPI - License](https://img.shields.io/pypi/l/torchact?color=blue) [![image](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)\r\n\r\n</div>\r\n\r\n## Quick Start\r\n\r\n```python\r\nimport torch\r\nimport torch.nn as nn\r\nimport torchact.nn as actnn\r\n\r\nmodel = nn.Sequential(\r\n    nn.Linear(5, 3),\r\n    actnn.ReLU(),\r\n    nn.Linear(3, 1),\r\n    nn.Sigmoid()\r\n)\r\n\r\ndummy = torch.rand(1, 5)\r\nprint(model(dummy))\r\n```\r\n\r\n## Installation\r\n\r\n```shell\r\npip install torchact\r\n```\r\n\r\n## How to Contribute\r\n\r\nThanks for your contribution!\r\n\r\nThere are several steps for contributing.\r\n\r\n0. Fork this repo (you can work dev branch.)\r\n1. Install library using `requirements.txt`\r\n2. Write your code in torchact folder.\r\n3. Add your module in `__init__.py` (`__version__` cannot be changed. It will be decided later.)\r\n\r\nFor example.\r\n\r\n```python\r\nfrom .your_module import Your_Module\r\n__all__ = (\"ReLU\", \"SinLU\", \"Softmax\", \"Your_Module\")\r\n```\r\n\r\n3. If you want to test case, Write test case.\r\n\r\nFor example.\r\n\r\n```python\r\ndef test_has_attr():\r\n    for activation_name in __all__:\r\n        if activation_name == \"Softmax\":\r\n            assert hasattr(str_to_class(activation_name)(), \"dim\")\r\n        else:\r\n            pass\r\n```\r\n\r\n4. Run black style.`black .`\r\n5. Send a PR. Code testing happens automatically. (PYPI is upgraded by the admin himself.)\r\n\r\n## Citing TorchAct\r\n\r\nTo cite this repository:\r\n\r\n```\r\n@article{hantorchact,\r\n  title={TorchAct, collection of activation function for PyTorch.},\r\n  author={Seungwoo Han},\r\n  publisher={Engineering Archive},\r\n  doi={10.31224/2988},\r\n  url={https://engrxiv.org/preprint/view/2988}\r\n  year={2023}\r\n}\r\n```\r\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "TorchAct, collection of activation function for PyTorch.",
    "version": "1.1.2",
    "project_urls": {
        "Homepage": "https://github.com/kaintels/torchact"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "3b452af1f1227242b649a20036146a114ab2242b361868812f74add884aba16f",
                "md5": "183a7a00302d48db54591494f0db3d98",
                "sha256": "ec14804f0b393474d62160ccdf0d05484340c530c95a48f24785e0263b95fc76"
            },
            "downloads": -1,
            "filename": "torchact-1.1.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "183a7a00302d48db54591494f0db3d98",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 10139,
            "upload_time": "2023-09-25T10:50:27",
            "upload_time_iso_8601": "2023-09-25T10:50:27.854878Z",
            "url": "https://files.pythonhosted.org/packages/3b/45/2af1f1227242b649a20036146a114ab2242b361868812f74add884aba16f/torchact-1.1.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "9e440d1d4899015b5416e47a0affd659092611adbd1f3a7e496d77e8d9109356",
                "md5": "fb22dd1bbd0eca2bea40d1135c65df4f",
                "sha256": "e088fcb09d7a0fe8d2999a3dc0d3ffd1e23eb39bb6fdcd430f969e1d970c421b"
            },
            "downloads": -1,
            "filename": "torchact-1.1.2.tar.gz",
            "has_sig": false,
            "md5_digest": "fb22dd1bbd0eca2bea40d1135c65df4f",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 8473,
            "upload_time": "2023-09-25T10:50:29",
            "upload_time_iso_8601": "2023-09-25T10:50:29.549761Z",
            "url": "https://files.pythonhosted.org/packages/9e/44/0d1d4899015b5416e47a0affd659092611adbd1f3a7e496d77e8d9109356/torchact-1.1.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-09-25 10:50:29",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "kaintels",
    "github_project": "torchact",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [
        {
            "name": "numpy",
            "specs": [
                [
                    "==",
                    "1.21.1"
                ]
            ]
        },
        {
            "name": "numpy",
            "specs": [
                [
                    "==",
                    "1.24.2"
                ]
            ]
        },
        {
            "name": "torch",
            "specs": [
                [
                    "==",
                    "1.13.1+cpu"
                ]
            ]
        },
        {
            "name": "black",
            "specs": [
                [
                    "==",
                    "23.1.0"
                ]
            ]
        },
        {
            "name": "pytest-cov",
            "specs": [
                [
                    "==",
                    "4.0.0"
                ]
            ]
        },
        {
            "name": "pytest",
            "specs": [
                [
                    "==",
                    "7.2.1"
                ]
            ]
        },
        {
            "name": "typing-extensions",
            "specs": [
                [
                    "==",
                    "4.5.0"
                ]
            ]
        },
        {
            "name": "myst_parser",
            "specs": [
                [
                    "==",
                    "0.18.1"
                ]
            ]
        },
        {
            "name": "Sphinx",
            "specs": [
                [
                    "==",
                    "5.3.0"
                ]
            ]
        },
        {
            "name": "sphinx-rtd-theme",
            "specs": [
                [
                    "==",
                    "1.1.1"
                ]
            ]
        }
    ],
    "lcname": "torchact"
}
        
Elapsed time: 0.12556s