udlayer


Nameudlayer JSON
Version 0.2.3 PyPI version JSON
download
home_pagehttps://github.com/SJTU-CILAB/udl
SummaryA suite of standardized data structure and pipeline for city data engineering
upload_time2024-08-19 22:53:02
maintainerNone
docs_urlNone
authorYiheng Wang
requires_pythonNone
licenseMIT
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <div align=center>
	<img src="./docs/logo.png" width="200"/>
</div>
<br />

UDL (UrbanDataLayer) is a suite of standard data structure and pipeline for city data engineering, which processes city data from various raw data into a unified data format.  

**UDL** is featured for:
- Unified standardized formats for city data: five data layers (grid, graph, point, polygon and linestring).
- User-friendly APIs of data processing: scheme transformation, granularity alignment and feature fusion.

## Usage

1. Install Python >= 3.8. For convenience, execute the following command.

```
pip install udlayer
```
2. Construct a UDL layer data. The full layer data formats and data processing APIs are available in the [**documentation**](https://urbandatalayer-doc.readthedocs.io/en/latest/).

```python
# Example: Construct a polygon layer data from a geojson file
from udlayer.layer.polygonlayer import PolygonLayer

polygonlayer = PolygonLayer("Vermont", "sample_Vermont.geojson", year=2014, column_list=['tag'])
print(polygonlayer.data)

# Example: Transform a tiff file to a grid layer data
from udlayer.transformation.transformation import *
from udlayer.alignment.alignment import *
from udlayer.utils.utility import *

griddata = tif_to_grid("pm2.5", ["Shanghai_pm2.5.tif"], start_lat=30.975, start_lon=121.1, end_lat=31.514, end_lon=121.804, year=2014)
print(griddata.data)
```

3. Transform between different data layers. 

```python
# Example: Transform a polygon layer to a graph layer
from udlayer.transformation.transformation import *

with open('sample_Vermont.pickle', 'rb') as f:
    polygon = pickle.load(f)
graph_data = polygon_to_graph(polygon)

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/SJTU-CILAB/udl",
    "name": "udlayer",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": null,
    "author": "Yiheng Wang",
    "author_email": "yhwang0828@sjtu.edu.cn",
    "download_url": "https://files.pythonhosted.org/packages/0c/29/5bbf90d43615b7306f2b75305bf17f978101edd9b2950d23ef3f116b2439/udlayer-0.2.3.tar.gz",
    "platform": null,
    "description": "<div align=center>\n\t<img src=\"./docs/logo.png\" width=\"200\"/>\n</div>\n<br />\n\nUDL (UrbanDataLayer) is a suite of standard data structure and pipeline for city data engineering, which processes city data from various raw data into a unified data format.  \n\n**UDL** is featured for:\n- Unified standardized formats for city data: five data layers (grid, graph, point, polygon and linestring).\n- User-friendly APIs of data processing: scheme transformation, granularity alignment and feature fusion.\n\n## Usage\n\n1. Install Python >= 3.8. For convenience, execute the following command.\n\n```\npip install udlayer\n```\n2. Construct a UDL layer data. The full layer data formats and data processing APIs are available in the [**documentation**](https://urbandatalayer-doc.readthedocs.io/en/latest/).\n\n```python\n# Example: Construct a polygon layer data from a geojson file\nfrom udlayer.layer.polygonlayer import PolygonLayer\n\npolygonlayer = PolygonLayer(\"Vermont\", \"sample_Vermont.geojson\", year=2014, column_list=['tag'])\nprint(polygonlayer.data)\n\n# Example: Transform a tiff file to a grid layer data\nfrom udlayer.transformation.transformation import *\nfrom udlayer.alignment.alignment import *\nfrom udlayer.utils.utility import *\n\ngriddata = tif_to_grid(\"pm2.5\", [\"Shanghai_pm2.5.tif\"], start_lat=30.975, start_lon=121.1, end_lat=31.514, end_lon=121.804, year=2014)\nprint(griddata.data)\n```\n\n3. Transform between different data layers. \n\n```python\n# Example: Transform a polygon layer to a graph layer\nfrom udlayer.transformation.transformation import *\n\nwith open('sample_Vermont.pickle', 'rb') as f:\n    polygon = pickle.load(f)\ngraph_data = polygon_to_graph(polygon)\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "A suite of standardized data structure and pipeline for city data engineering",
    "version": "0.2.3",
    "project_urls": {
        "Homepage": "https://github.com/SJTU-CILAB/udl"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "0c295bbf90d43615b7306f2b75305bf17f978101edd9b2950d23ef3f116b2439",
                "md5": "77ea98800fb06d5856f681fdbef88f2d",
                "sha256": "1c6d33f1678922addea1da28c6e4dd2c3babe461ac9c76456e71126fa65c7c5f"
            },
            "downloads": -1,
            "filename": "udlayer-0.2.3.tar.gz",
            "has_sig": false,
            "md5_digest": "77ea98800fb06d5856f681fdbef88f2d",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 17769,
            "upload_time": "2024-08-19T22:53:02",
            "upload_time_iso_8601": "2024-08-19T22:53:02.957718Z",
            "url": "https://files.pythonhosted.org/packages/0c/29/5bbf90d43615b7306f2b75305bf17f978101edd9b2950d23ef3f116b2439/udlayer-0.2.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-08-19 22:53:02",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "SJTU-CILAB",
    "github_project": "udl",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "udlayer"
}
        
Elapsed time: 0.31353s