uf3


Nameuf3 JSON
Version 0.4.0 PyPI version JSON
download
home_pagehttps://github.com/uf3/uf3
SummaryUltra-Fast Force Fields for molecular dynamics
upload_time2023-10-27 16:37:17
maintainer
docs_urlNone
authorStephen R. Xie, Matthias Rupp
requires_python
licenseApache 2.0
keywords
VCS
bugtrack_url
requirements ase matplotlib ndsplines numba numpy pandas plotly PyYAML scikit-learn scipy tables tqdm EXTRAS_REQUIRE
Travis-CI No Travis.
coveralls test coverage No coveralls.
            Ultra-Fast Force Fields (UF3)
=============================

|Tests|


\S. R. Xie, M. Rupp, and R. G. Hennig, "Ultra-fast interpretable machine-learning potentials", preprint `arXiv:2110.00624 <https://arxiv.org/abs/2110.00624>`_ (2021).

All-atom dynamics simulations have become an indispensable quantitative
tool in physics, chemistry, and materials science, but large systems and
long simulation times remain challenging due to the trade-off between
computational efficiency and predictive accuracy. The UF3 framework is
built to address this challenge by combinining effective two- and
three-body potentials in a cubic B-spline basis with regularized linear
regression to obtain machine-learning potentials that are physically
interpretable, sufficiently accurate for applications, and as fast as
the fastest traditional empirical potentials.

Documentation: https://uf3.readthedocs.io/

This repository is still under construction. Please feel free to open
new issues for feature requests and bug reports.

Setup
-----

.. Recommended: Install UF3 in a new conda environment:

.. .. code:: bash

..    conda create -n uf3_env python=3.8
..    conda activate uf3_env

UF3 can be installed in two different ways:

1. Download and install automatically from PyPI (recommended):

.. code:: bash

   pip install uf3

2. Download and install manually from GitHub:

.. code:: bash

   git clone https://github.com/uf3/uf3.git
   cd uf3
   pip install .

Getting Started
---------------

Please see the examples in uf3/examples/tungsten_extxyz for basic usage.

Overviews for individual modules can be found in uf3/examples/modules
(WIP).

Standalone scripts and configuration generators/parsers are in
development.

Optional Dependencies
---------------------

Elastic constants:

::

   pip install setuptools_scm
   pip install uf3[elastic_constants]

Phonon spectra:

::

   pip install uf3[phonon_spectra]

LAMMPS interface:

::

   conda install numpy==1.20.3 --force-reinstall
   conda install -c conda-forge lammps --no-update-deps

The environment variable ``$ASE_LAMMPSRUN_COMMAND`` must also be set to use the LAMMPS interface within python. See the `ASE documentation <https://wiki.fysik.dtu.dk/ase/ase/calculators/lammpsrun.html>`_ for details.

Dependencies
------------

-  We rely on ase to handle parsing outputs from atomistic codes like
   LAMMPS, VASP, and CP2K.
-  We use Pandas to keep track of atomic configurations and their
   energies/forces as well as organizing data for featurization and
   training.
-  B-spline evaluations use scipy, numba, and ndsplines.
-  PyTables is used for reading/writing HDF5 files.
-  Matplotlib is used for plotting.
-  We use sklearn for regression.
-  We use tqdm for progress bars.
-  We use plotly for interactive plots.
-  We use PyYaml for configuration files.
-  We use numpy for array operations.


.. |Tests| image:: https://github.com/uf3/uf3/workflows/Tests/badge.svg
   :target: https://github.com/uf3/uf3/actions

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/uf3/uf3",
    "name": "uf3",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "",
    "author": "Stephen R. Xie, Matthias Rupp",
    "author_email": "sxiexie@ufl.edu",
    "download_url": "https://files.pythonhosted.org/packages/98/e2/2151c3f9bccaf5412ac1e17f285c0f0dcaee18a5db9d33dfa2769e3b3378/uf3-0.4.0.tar.gz",
    "platform": null,
    "description": "Ultra-Fast Force Fields (UF3)\n=============================\n\n|Tests|\n\n\n\\S. R. Xie, M. Rupp, and R. G. Hennig, \"Ultra-fast interpretable machine-learning potentials\", preprint `arXiv:2110.00624 <https://arxiv.org/abs/2110.00624>`_ (2021).\n\nAll-atom dynamics simulations have become an indispensable quantitative\ntool in physics, chemistry, and materials science, but large systems and\nlong simulation times remain challenging due to the trade-off between\ncomputational efficiency and predictive accuracy. The UF3 framework is\nbuilt to address this challenge by combinining effective two- and\nthree-body potentials in a cubic B-spline basis with regularized linear\nregression to obtain machine-learning potentials that are physically\ninterpretable, sufficiently accurate for applications, and as fast as\nthe fastest traditional empirical potentials.\n\nDocumentation: https://uf3.readthedocs.io/\n\nThis repository is still under construction. Please feel free to open\nnew issues for feature requests and bug reports.\n\nSetup\n-----\n\n.. Recommended: Install UF3 in a new conda environment:\n\n.. .. code:: bash\n\n..    conda create -n uf3_env python=3.8\n..    conda activate uf3_env\n\nUF3 can be installed in two different ways:\n\n1. Download and install automatically from PyPI (recommended):\n\n.. code:: bash\n\n   pip install uf3\n\n2. Download and install manually from GitHub:\n\n.. code:: bash\n\n   git clone https://github.com/uf3/uf3.git\n   cd uf3\n   pip install .\n\nGetting Started\n---------------\n\nPlease see the examples in uf3/examples/tungsten_extxyz for basic usage.\n\nOverviews for individual modules can be found in uf3/examples/modules\n(WIP).\n\nStandalone scripts and configuration generators/parsers are in\ndevelopment.\n\nOptional Dependencies\n---------------------\n\nElastic constants:\n\n::\n\n   pip install setuptools_scm\n   pip install uf3[elastic_constants]\n\nPhonon spectra:\n\n::\n\n   pip install uf3[phonon_spectra]\n\nLAMMPS interface:\n\n::\n\n   conda install numpy==1.20.3 --force-reinstall\n   conda install -c conda-forge lammps --no-update-deps\n\nThe environment variable ``$ASE_LAMMPSRUN_COMMAND`` must also be set to use the LAMMPS interface within python. See the `ASE documentation <https://wiki.fysik.dtu.dk/ase/ase/calculators/lammpsrun.html>`_ for details.\n\nDependencies\n------------\n\n-  We rely on ase to handle parsing outputs from atomistic codes like\n   LAMMPS, VASP, and CP2K.\n-  We use Pandas to keep track of atomic configurations and their\n   energies/forces as well as organizing data for featurization and\n   training.\n-  B-spline evaluations use scipy, numba, and ndsplines.\n-  PyTables is used for reading/writing HDF5 files.\n-  Matplotlib is used for plotting.\n-  We use sklearn for regression.\n-  We use tqdm for progress bars.\n-  We use plotly for interactive plots.\n-  We use PyYaml for configuration files.\n-  We use numpy for array operations.\n\n\n.. |Tests| image:: https://github.com/uf3/uf3/workflows/Tests/badge.svg\n   :target: https://github.com/uf3/uf3/actions\n",
    "bugtrack_url": null,
    "license": "Apache 2.0",
    "summary": "Ultra-Fast Force Fields for molecular dynamics",
    "version": "0.4.0",
    "project_urls": {
        "Homepage": "https://github.com/uf3/uf3"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "10f7904d895c3dc5604ccf8c3871f53f48b8c40a5299ce021c2b9a0416e20be2",
                "md5": "6f319794637d5b248502574efd2bb33c",
                "sha256": "99dd1154b668401198f7e49b1f1464c0d737ffc1a92388bb3a708a354d79f692"
            },
            "downloads": -1,
            "filename": "uf3-0.4.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "6f319794637d5b248502574efd2bb33c",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 93516,
            "upload_time": "2023-10-27T16:37:16",
            "upload_time_iso_8601": "2023-10-27T16:37:16.097446Z",
            "url": "https://files.pythonhosted.org/packages/10/f7/904d895c3dc5604ccf8c3871f53f48b8c40a5299ce021c2b9a0416e20be2/uf3-0.4.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "98e22151c3f9bccaf5412ac1e17f285c0f0dcaee18a5db9d33dfa2769e3b3378",
                "md5": "3e42fb18f76f73e7e1689f0087b8b4bf",
                "sha256": "10b706822d217a6407ddac40bda54bce9ea56ffd78ef6ddbe687924a203fb893"
            },
            "downloads": -1,
            "filename": "uf3-0.4.0.tar.gz",
            "has_sig": false,
            "md5_digest": "3e42fb18f76f73e7e1689f0087b8b4bf",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 99733,
            "upload_time": "2023-10-27T16:37:17",
            "upload_time_iso_8601": "2023-10-27T16:37:17.784848Z",
            "url": "https://files.pythonhosted.org/packages/98/e2/2151c3f9bccaf5412ac1e17f285c0f0dcaee18a5db9d33dfa2769e3b3378/uf3-0.4.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-10-27 16:37:17",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "uf3",
    "github_project": "uf3",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [
        {
            "name": "ase",
            "specs": []
        },
        {
            "name": "matplotlib",
            "specs": []
        },
        {
            "name": "ndsplines",
            "specs": []
        },
        {
            "name": "numba",
            "specs": []
        },
        {
            "name": "numpy",
            "specs": []
        },
        {
            "name": "pandas",
            "specs": []
        },
        {
            "name": "plotly",
            "specs": []
        },
        {
            "name": "PyYAML",
            "specs": []
        },
        {
            "name": "scikit-learn",
            "specs": []
        },
        {
            "name": "scipy",
            "specs": []
        },
        {
            "name": "tables",
            "specs": []
        },
        {
            "name": "tqdm",
            "specs": []
        },
        {
            "name": "EXTRAS_REQUIRE",
            "specs": []
        }
    ],
    "lcname": "uf3"
}
        
Elapsed time: 0.37211s