GSEApy
========
GSEApy: Gene Set Enrichment Analysis in Python.
------------------------------------------------
.. image:: https://badge.fury.io/py/gseapy.svg
:target: https://badge.fury.io/py/gseapy
.. image:: https://img.shields.io/conda/vn/bioconda/GSEApy.svg?style=plastic
:target: http://bioconda.github.io
.. image:: https://anaconda.org/bioconda/gseapy/badges/downloads.svg
:target: https://anaconda.org/bioconda/gseapy
.. image:: https://github.com/zqfang/GSEApy/workflows/GSEApy/badge.svg?branch=master
:target: https://github.com/zqfang/GSEApy/actions
:alt: Action Status
.. image:: http://readthedocs.org/projects/gseapy/badge/?version=master
:target: http://gseapy.readthedocs.io/en/master/?badge=master
:alt: Documentation Status
.. image:: https://img.shields.io/badge/license-MIT-blue.svg
:target: https://img.shields.io/badge/license-MIT-blue.svg
.. image:: https://img.shields.io/pypi/pyversions/gseapy.svg
:alt: PyPI - Python Version
**Release notes** : https://github.com/zqfang/GSEApy/releases
`Tutorial for scRNA-seq datasets <https://gseapy.readthedocs.io/en/latest/singlecell_example.html#>`_
`Tutorial for general usage <https://gseapy.readthedocs.io/en/latest/gseapy_example.html>`_
Citation
------------------------------------
::
Zhuoqing Fang, Xinyuan Liu, Gary Peltz, GSEApy: a comprehensive package for performing gene set enrichment analysis in Python,
Bioinformatics, 2022;, btac757, https://doi.org/10.1093/bioinformatics/btac757
GSEApy is a Python/Rust implementation for **GSEA** and wrapper for **Enrichr**.
--------------------------------------------------------------------------------------------
GSEApy can be used for **RNA-seq, ChIP-seq, Microarray** data. It can be used for convenient GO enrichment and to produce **publication quality figures** in python.
GSEApy has 7 sub-commands available: ``gsea``, ``prerank``, ``ssgsea``, ``gsva``, ``replot`` ``enrichr``, ``biomart``.
:gsea: The ``gsea`` module produces `GSEA <http://www.broadinstitute.org/cancer/software/gsea/wiki/index.php/Main_Page>`_ results. The input requries a txt file(FPKM, Expected Counts, TPM, et.al), a cls file, and gene_sets file in gmt format.
:prerank: The ``prerank`` module produces **Prerank tool** results. The input expects a pre-ranked gene list dataset with correlation values, provided in .rnk format, and gene_sets file in gmt format. ``prerank`` module is an API to `GSEA` pre-rank tools.
:ssgsea: The ``ssgsea`` module performs **single sample GSEA(ssGSEA)** analysis. The input expects a pd.Series (indexed by gene name), or a pd.DataFrame (include ``GCT`` file) with expression values and a ``GMT`` file. For multiple sample input, ssGSEA reconigzes gct format, too. ssGSEA enrichment score for the gene set is described by `D. Barbie et al 2009 <http://www.nature.com/nature/journal/v462/n7269/abs/nature08460.html>`_.
:gsva: The ``gsva`` module performs `GSVA <https://github.com/rcastelo/GSVA>`_ method by `Hänzelmann et al <https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-7>`_. The input is same to ssgsea.
:replot: The ``replot`` module reproduce GSEA desktop version results. The only input for GSEApy is the location to ``GSEA`` Desktop output results.
:enrichr: The ``enrichr`` module enable you perform gene set enrichment analysis using ``Enrichr`` API. Enrichr is open source and freely available online at: http://amp.pharm.mssm.edu/Enrichr . It runs very fast.
:biomart: The ``biomart`` module helps you convert gene ids using BioMart API.
Please use 'gseapy COMMAND -h' to see the detail description for each option of each module.
The full ``GSEA`` is far too extensive to describe here; see
`GSEA <http://www.broadinstitute.org/cancer/software/gsea/wiki/index.php/Main_Page>`_ documentation for more information. All files' formats for GSEApy are identical to ``GSEA`` desktop version.
Why GSEApy
-----------------------------------------------------
I would like to use Pandas to explore my data, but I did not find a convenient tool to
do gene set enrichment analysis in python. So, here are my reasons:
* **Ability to run inside python interactive console without having to switch to R!!!**
* User friendly for both wet and dry lab users.
* Produce or reproduce publishable figures.
* Perform batch jobs easy.
* Easy to use in bash shell or your data analysis workflow, e.g. snakemake.
GSEApy vs GSEA(Broad) output
-----------------------------------------------
Using the same data for ``GSEAPreranked``, and ``GSEApy`` reproduce similar results.
.. image:: docs/Preank.py.vs.broad.jpg
:width: 400
See more output here: `Example <http://gseapy.readthedocs.io/en/master/gseapy_example.html>`_
Installation
------------
| Install gseapy package from bioconda or pip.
.. code:: shell
# if you have conda (MacOS_x86-64 and Linux only)
$ conda install -c bioconda gseapy
# Windows and MacOS_ARM64(M1/2-Chip)
$ pip install gseapy
| If pip install failed, use
.. code:: shell
# you need to install rust first to compile the code
curl https://sh.rustup.rs -sSf | sh -s -- -y
# export rust compiler
export PATH="$PATH:$HOME/.cargo/bin"
# install
$ pip install git+git://github.com/zqfang/gseapy.git#egg=gseapy
Dependency
--------------
* Python 3.7+
Mandatory
~~~~~~~~~
* build
* Rust: For gseapy > 0.11.0, Rust compiler is needed
* setuptools-rust
* run
* Numpy >= 1.13.0
* Scipy
* Pandas
* Matplotlib
* Requests
Run GSEApy
-----------------
For command line usage:
~~~~~~~~~~~~~~~~~~~~~~~
.. code:: bash
# An example to reproduce figures using replot module.
$ gseapy replot -i ./Gsea.reports -o test
# An example to run GSEA using gseapy gsea module
$ gseapy gsea -d exptable.txt -c test.cls -g gene_sets.gmt -o test
# An example to run Prerank using gseapy prerank module
$ gseapy prerank -r gsea_data.rnk -g gene_sets.gmt -o test
# An example to run ssGSEA using gseapy ssgsea module
$ gseapy ssgsea -d expression.txt -g gene_sets.gmt -o test
# An example to run GSVA using gseapy ssgsea module
$ gseapy gsva -d expression.txt -g gene_sets.gmt -o test
# An example to use enrichr api
# see details for -g input -> ``get_library_name``
$ gseapy enrichr -i gene_list.txt -g KEGG_2016 -o test
Run gseapy inside python console:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1. Prepare expression.txt, gene_sets.gmt and test.cls required by GSEA, you could do this
.. code:: python
import gseapy
# run GSEA.
gseapy.gsea(data='expression.txt', gene_sets='gene_sets.gmt', cls='test.cls', outdir='test')
# run prerank
gseapy.prerank(rnk='gsea_data.rnk', gene_sets='gene_sets.gmt', outdir='test')
# run ssGSEA
gseapy.ssgsea(data="expression.txt", gene_sets= "gene_sets.gmt", outdir='test')
# run GSVA
gseapy.gsva(data="expression.txt", gene_sets= "gene_sets.gmt", outdir='test')
# An example to reproduce figures using replot module.
gseapy.replot(indir='./Gsea.reports', outdir='test')
2. If you prefer to use Dataframe, dict, list in interactive python console, you could do this.
see detail here: `Example <http://gseapy.readthedocs.io/en/master/gseapy_example.html>`_
.. code:: python
# assign dataframe, and use enrichr library data set 'KEGG_2016'
expression_dataframe = pd.DataFrame()
sample_name = ['A','A','A','B','B','B'] # always only two group,any names you like
# assign gene_sets parameter with enrichr library name or gmt file on your local computer.
gseapy.gsea(data=expression_dataframe, gene_sets='KEGG_2016', cls= sample_names, outdir='test')
# prerank tool
gene_ranked_dataframe = pd.DataFrame()
gseapy.prerank(rnk=gene_ranked_dataframe, gene_sets='KEGG_2016', outdir='test')
# ssGSEA
gseapy.ssgsea(data=expression_dataframe, gene_sets='KEGG_2016', outdir='test')
# gsva
gseapy.gsva(data=expression_dataframe, gene_sets='KEGG_2016', outdir='test')
3. For ``enrichr`` , you could assign a list, pd.Series, pd.DataFrame object, or a txt file (should be one gene name per row.)
.. code:: python
# assign a list object to enrichr
gl = ['SCARA3', 'LOC100044683', 'CMBL', 'CLIC6', 'IL13RA1', 'TACSTD2', 'DKKL1', 'CSF1',
'SYNPO2L', 'TINAGL1', 'PTX3', 'BGN', 'HERC1', 'EFNA1', 'CIB2', 'PMP22', 'TMEM173']
gseapy.enrichr(gene_list=gl, gene_sets='KEGG_2016', outdir='test')
# or a txt file path.
gseapy.enrichr(gene_list='gene_list.txt', gene_sets='KEGG_2016',
outdir='test', cutoff=0.05, format='png' )
GSEApy supported gene set libaries :
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
To see the full list of gseapy supported gene set libraries, please click here: `Library <http://amp.pharm.mssm.edu/Enrichr/#stats>`_
Or use ``get_library_name`` function inside python console.
.. code:: python
#see full list of latest enrichr library names, which will pass to -g parameter:
names = gseapy.get_library_name()
# show top 20 entries.
print(names[:20])
['Genome_Browser_PWMs',
'TRANSFAC_and_JASPAR_PWMs',
'ChEA_2013',
'Drug_Perturbations_from_GEO_2014',
'ENCODE_TF_ChIP-seq_2014',
'BioCarta_2013',
'Reactome_2013',
'WikiPathways_2013',
'Disease_Signatures_from_GEO_up_2014',
'KEGG_2016',
'TF-LOF_Expression_from_GEO',
'TargetScan_microRNA',
'PPI_Hub_Proteins',
'GO_Molecular_Function_2015',
'GeneSigDB',
'Chromosome_Location',
'Human_Gene_Atlas',
'Mouse_Gene_Atlas',
'GO_Cellular_Component_2015',
'GO_Biological_Process_2015',
'Human_Phenotype_Ontology',]
Dev
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. code:: shell
# test rust extension only
cargo test --features=extension-module
# test whole package
python setup.py test
Bug Report
~~~~~~~~~~~~~~~~~~~~~~~~~~~
If you would like to report any bugs when use gseapy, don't hesitate to create an issue on github here.
To get help of GSEApy
------------------------------------
1. See `Frequently Asked Questions <https://gseapy.readthedocs.io/en/latest/faq.html>`_
2. Visit the document site at `Examples <https://gseapy.readthedocs.io/en/latest/gseapy_example.html>`_
3. The GSEApy discussion channel: `Q&A <https://github.com/zqfang/GSEApy/discussions>`_
Raw data
{
"_id": null,
"home_page": "https://github.com/zqfang/gseapy",
"name": "gseapy",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.7",
"maintainer_email": null,
"keywords": "Gene Ontology, GO, Biology, Enrichment, Bioinformatics, Computational Biology",
"author": "Zhuoqing Fang",
"author_email": "fzq518@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/12/92/0a4e24f4a0ac772e8ec652f299a89292eb66d67e329579e1ea48cc006250/gseapy-1.1.4.tar.gz",
"platform": null,
"description": "\nGSEApy\n========\n\nGSEApy: Gene Set Enrichment Analysis in Python.\n------------------------------------------------\n\n.. image:: https://badge.fury.io/py/gseapy.svg\n :target: https://badge.fury.io/py/gseapy\n\n.. image:: https://img.shields.io/conda/vn/bioconda/GSEApy.svg?style=plastic\n :target: http://bioconda.github.io\n\n.. image:: https://anaconda.org/bioconda/gseapy/badges/downloads.svg \n :target: https://anaconda.org/bioconda/gseapy\n\n.. image:: https://github.com/zqfang/GSEApy/workflows/GSEApy/badge.svg?branch=master\n :target: https://github.com/zqfang/GSEApy/actions\n :alt: Action Status\n\n.. image:: http://readthedocs.org/projects/gseapy/badge/?version=master\n :target: http://gseapy.readthedocs.io/en/master/?badge=master\n :alt: Documentation Status\n\n.. image:: https://img.shields.io/badge/license-MIT-blue.svg\n :target: https://img.shields.io/badge/license-MIT-blue.svg\n\n.. image:: https://img.shields.io/pypi/pyversions/gseapy.svg\n :alt: PyPI - Python Version\n\n\n**Release notes** : https://github.com/zqfang/GSEApy/releases\n\n`Tutorial for scRNA-seq datasets <https://gseapy.readthedocs.io/en/latest/singlecell_example.html#>`_\n\n`Tutorial for general usage <https://gseapy.readthedocs.io/en/latest/gseapy_example.html>`_\n\n\nCitation\n------------------------------------\n::\n\n Zhuoqing Fang, Xinyuan Liu, Gary Peltz, GSEApy: a comprehensive package for performing gene set enrichment analysis in Python, \n Bioinformatics, 2022;, btac757, https://doi.org/10.1093/bioinformatics/btac757\n\n\n\nGSEApy is a Python/Rust implementation for **GSEA** and wrapper for **Enrichr**.\n--------------------------------------------------------------------------------------------\n\nGSEApy can be used for **RNA-seq, ChIP-seq, Microarray** data. It can be used for convenient GO enrichment and to produce **publication quality figures** in python.\n\n\nGSEApy has 7 sub-commands available: ``gsea``, ``prerank``, ``ssgsea``, ``gsva``, ``replot`` ``enrichr``, ``biomart``.\n\n\n:gsea: The ``gsea`` module produces `GSEA <http://www.broadinstitute.org/cancer/software/gsea/wiki/index.php/Main_Page>`_ results. The input requries a txt file(FPKM, Expected Counts, TPM, et.al), a cls file, and gene_sets file in gmt format.\n:prerank: The ``prerank`` module produces **Prerank tool** results. The input expects a pre-ranked gene list dataset with correlation values, provided in .rnk format, and gene_sets file in gmt format. ``prerank`` module is an API to `GSEA` pre-rank tools.\n:ssgsea: The ``ssgsea`` module performs **single sample GSEA(ssGSEA)** analysis. The input expects a pd.Series (indexed by gene name), or a pd.DataFrame (include ``GCT`` file) with expression values and a ``GMT`` file. For multiple sample input, ssGSEA reconigzes gct format, too. ssGSEA enrichment score for the gene set is described by `D. Barbie et al 2009 <http://www.nature.com/nature/journal/v462/n7269/abs/nature08460.html>`_.\n:gsva: The ``gsva`` module performs `GSVA <https://github.com/rcastelo/GSVA>`_ method by `H\u00e4nzelmann et al <https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-7>`_. The input is same to ssgsea.\n:replot: The ``replot`` module reproduce GSEA desktop version results. The only input for GSEApy is the location to ``GSEA`` Desktop output results.\n:enrichr: The ``enrichr`` module enable you perform gene set enrichment analysis using ``Enrichr`` API. Enrichr is open source and freely available online at: http://amp.pharm.mssm.edu/Enrichr . It runs very fast.\n:biomart: The ``biomart`` module helps you convert gene ids using BioMart API.\n\n\nPlease use 'gseapy COMMAND -h' to see the detail description for each option of each module.\n\n\nThe full ``GSEA`` is far too extensive to describe here; see\n`GSEA <http://www.broadinstitute.org/cancer/software/gsea/wiki/index.php/Main_Page>`_ documentation for more information. All files' formats for GSEApy are identical to ``GSEA`` desktop version.\n\n\n\nWhy GSEApy\n-----------------------------------------------------\n\nI would like to use Pandas to explore my data, but I did not find a convenient tool to\ndo gene set enrichment analysis in python. So, here are my reasons:\n\n* **Ability to run inside python interactive console without having to switch to R!!!**\n* User friendly for both wet and dry lab users.\n* Produce or reproduce publishable figures.\n* Perform batch jobs easy.\n* Easy to use in bash shell or your data analysis workflow, e.g. snakemake.\n\n\nGSEApy vs GSEA(Broad) output\n-----------------------------------------------\nUsing the same data for ``GSEAPreranked``, and ``GSEApy`` reproduce similar results.\n\n\n.. image:: docs/Preank.py.vs.broad.jpg\n :width: 400\n\n\nSee more output here: `Example <http://gseapy.readthedocs.io/en/master/gseapy_example.html>`_\n\n\nInstallation\n------------\n\n| Install gseapy package from bioconda or pip.\n\n\n.. code:: shell\n\n # if you have conda (MacOS_x86-64 and Linux only)\n $ conda install -c bioconda gseapy\n # Windows and MacOS_ARM64(M1/2-Chip)\n $ pip install gseapy\n\n\n| If pip install failed, use\n\n.. code:: shell\n\n # you need to install rust first to compile the code\n curl https://sh.rustup.rs -sSf | sh -s -- -y\n # export rust compiler \n export PATH=\"$PATH:$HOME/.cargo/bin\"\n # install\n $ pip install git+git://github.com/zqfang/gseapy.git#egg=gseapy\n\n\nDependency\n--------------\n* Python 3.7+\n\nMandatory\n~~~~~~~~~\n\n* build\n * Rust: For gseapy > 0.11.0, Rust compiler is needed\n * setuptools-rust\n* run\n * Numpy >= 1.13.0\n * Scipy\n * Pandas\n * Matplotlib\n * Requests\n\nRun GSEApy\n-----------------\n\n\nFor command line usage:\n~~~~~~~~~~~~~~~~~~~~~~~\n\n.. code:: bash\n\n\n # An example to reproduce figures using replot module.\n $ gseapy replot -i ./Gsea.reports -o test\n\n\n # An example to run GSEA using gseapy gsea module\n $ gseapy gsea -d exptable.txt -c test.cls -g gene_sets.gmt -o test\n\n # An example to run Prerank using gseapy prerank module\n $ gseapy prerank -r gsea_data.rnk -g gene_sets.gmt -o test\n\n # An example to run ssGSEA using gseapy ssgsea module\n $ gseapy ssgsea -d expression.txt -g gene_sets.gmt -o test\n\n # An example to run GSVA using gseapy ssgsea module\n $ gseapy gsva -d expression.txt -g gene_sets.gmt -o test\n\n # An example to use enrichr api\n # see details for -g input -> ``get_library_name`` \n $ gseapy enrichr -i gene_list.txt -g KEGG_2016 -o test\n\n\n\nRun gseapy inside python console:\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n\n1. Prepare expression.txt, gene_sets.gmt and test.cls required by GSEA, you could do this\n\n.. code:: python\n\n import gseapy\n\n # run GSEA.\n gseapy.gsea(data='expression.txt', gene_sets='gene_sets.gmt', cls='test.cls', outdir='test')\n\n # run prerank\n gseapy.prerank(rnk='gsea_data.rnk', gene_sets='gene_sets.gmt', outdir='test')\n\n # run ssGSEA\n gseapy.ssgsea(data=\"expression.txt\", gene_sets= \"gene_sets.gmt\", outdir='test')\n\n # run GSVA\n gseapy.gsva(data=\"expression.txt\", gene_sets= \"gene_sets.gmt\", outdir='test')\n\n # An example to reproduce figures using replot module.\n gseapy.replot(indir='./Gsea.reports', outdir='test')\n\n\n2. If you prefer to use Dataframe, dict, list in interactive python console, you could do this.\n\nsee detail here: `Example <http://gseapy.readthedocs.io/en/master/gseapy_example.html>`_\n\n.. code:: python\n\n\n # assign dataframe, and use enrichr library data set 'KEGG_2016'\n expression_dataframe = pd.DataFrame()\n\n sample_name = ['A','A','A','B','B','B'] # always only two group,any names you like\n\n # assign gene_sets parameter with enrichr library name or gmt file on your local computer.\n gseapy.gsea(data=expression_dataframe, gene_sets='KEGG_2016', cls= sample_names, outdir='test')\n\n # prerank tool\n gene_ranked_dataframe = pd.DataFrame()\n gseapy.prerank(rnk=gene_ranked_dataframe, gene_sets='KEGG_2016', outdir='test')\n\n # ssGSEA\n gseapy.ssgsea(data=expression_dataframe, gene_sets='KEGG_2016', outdir='test')\n\n # gsva\n gseapy.gsva(data=expression_dataframe, gene_sets='KEGG_2016', outdir='test')\n\n\n3. For ``enrichr`` , you could assign a list, pd.Series, pd.DataFrame object, or a txt file (should be one gene name per row.)\n\n.. code:: python\n\n # assign a list object to enrichr\n gl = ['SCARA3', 'LOC100044683', 'CMBL', 'CLIC6', 'IL13RA1', 'TACSTD2', 'DKKL1', 'CSF1',\n 'SYNPO2L', 'TINAGL1', 'PTX3', 'BGN', 'HERC1', 'EFNA1', 'CIB2', 'PMP22', 'TMEM173']\n\n gseapy.enrichr(gene_list=gl, gene_sets='KEGG_2016', outdir='test')\n\n # or a txt file path.\n gseapy.enrichr(gene_list='gene_list.txt', gene_sets='KEGG_2016',\n outdir='test', cutoff=0.05, format='png' )\n\n\nGSEApy supported gene set libaries :\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n\nTo see the full list of gseapy supported gene set libraries, please click here: `Library <http://amp.pharm.mssm.edu/Enrichr/#stats>`_\n\nOr use ``get_library_name`` function inside python console.\n\n.. code:: python\n\n #see full list of latest enrichr library names, which will pass to -g parameter:\n names = gseapy.get_library_name()\n\n # show top 20 entries.\n print(names[:20])\n\n\n ['Genome_Browser_PWMs',\n 'TRANSFAC_and_JASPAR_PWMs',\n 'ChEA_2013',\n 'Drug_Perturbations_from_GEO_2014',\n 'ENCODE_TF_ChIP-seq_2014',\n 'BioCarta_2013',\n 'Reactome_2013',\n 'WikiPathways_2013',\n 'Disease_Signatures_from_GEO_up_2014',\n 'KEGG_2016',\n 'TF-LOF_Expression_from_GEO',\n 'TargetScan_microRNA',\n 'PPI_Hub_Proteins',\n 'GO_Molecular_Function_2015',\n 'GeneSigDB',\n 'Chromosome_Location',\n 'Human_Gene_Atlas',\n 'Mouse_Gene_Atlas',\n 'GO_Cellular_Component_2015',\n 'GO_Biological_Process_2015',\n 'Human_Phenotype_Ontology',]\n\n\n\nDev \n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n\n.. code:: shell\n\n\n # test rust extension only \n cargo test --features=extension-module\n # test whole package\n python setup.py test\n\n\n\nBug Report\n~~~~~~~~~~~~~~~~~~~~~~~~~~~\n\nIf you would like to report any bugs when use gseapy, don't hesitate to create an issue on github here.\n\n\nTo get help of GSEApy\n------------------------------------\n\n1. See `Frequently Asked Questions <https://gseapy.readthedocs.io/en/latest/faq.html>`_\n\n2. Visit the document site at `Examples <https://gseapy.readthedocs.io/en/latest/gseapy_example.html>`_\n\n3. The GSEApy discussion channel: `Q&A <https://github.com/zqfang/GSEApy/discussions>`_ \n\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Gene Set Enrichment Analysis in Python",
"version": "1.1.4",
"project_urls": {
"Documentation": "https://gseapy.readthedocs.io/en/latest/",
"Download": "https://github.com/zqfang/gseapy",
"Homepage": "https://github.com/zqfang/gseapy",
"Source": "https://github.com/zqfang/GSEApy",
"Tracker": "https://github.com/zqfang/GSEApy/issues"
},
"split_keywords": [
"gene ontology",
" go",
" biology",
" enrichment",
" bioinformatics",
" computational biology"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "681517667c194aea86482ce4747a7ca6a9438cd99602aba3f3f1d09a65d202a9",
"md5": "8726d287855cffbd356d746c02f1365e",
"sha256": "e0b425d60be0689100174ae1b6975c2471935c6bec3f812e02909517ead73c3a"
},
"downloads": -1,
"filename": "gseapy-1.1.4-cp310-cp310-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "8726d287855cffbd356d746c02f1365e",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.7",
"size": 481593,
"upload_time": "2024-11-13T21:05:38",
"upload_time_iso_8601": "2024-11-13T21:05:38.864544Z",
"url": "https://files.pythonhosted.org/packages/68/15/17667c194aea86482ce4747a7ca6a9438cd99602aba3f3f1d09a65d202a9/gseapy-1.1.4-cp310-cp310-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "8bdaad5a81542120f7132a68985840037f1747a9ba4297644633afdfa9c32dc2",
"md5": "fe362ee43a1d76c5302f104ad5d1fcd0",
"sha256": "79b8b71962386f8b9fc530f1af1313d781a5b5e6632df301b79685187ce5c3c0"
},
"downloads": -1,
"filename": "gseapy-1.1.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"has_sig": false,
"md5_digest": "fe362ee43a1d76c5302f104ad5d1fcd0",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.7",
"size": 530633,
"upload_time": "2024-11-13T21:28:34",
"upload_time_iso_8601": "2024-11-13T21:28:34.684803Z",
"url": "https://files.pythonhosted.org/packages/8b/da/ad5a81542120f7132a68985840037f1747a9ba4297644633afdfa9c32dc2/gseapy-1.1.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "4c446c91a07f45373bff1de11d22ef2affaeabf894c188b3d3b38d201debee4a",
"md5": "351dbe21f8b81688456ad56eea527506",
"sha256": "f6398ad7d80e11cd9c665117edc9966f8d9ec18809b2a4d6d35161a17f4ac79c"
},
"downloads": -1,
"filename": "gseapy-1.1.4-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl",
"has_sig": false,
"md5_digest": "351dbe21f8b81688456ad56eea527506",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.7",
"size": 570075,
"upload_time": "2024-11-13T21:07:26",
"upload_time_iso_8601": "2024-11-13T21:07:26.603037Z",
"url": "https://files.pythonhosted.org/packages/4c/44/6c91a07f45373bff1de11d22ef2affaeabf894c188b3d3b38d201debee4a/gseapy-1.1.4-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "f9abb03c0dca8a4eca983d33c9b15d6e203f223eccdb06f96f335a6e7df2a2a9",
"md5": "31068472d4fc5e259bae00532c1fef9f",
"sha256": "15d92ada8a1370a2283c6f67228a91a5ae1646bab5c94c80c49cf49c7a76dde7"
},
"downloads": -1,
"filename": "gseapy-1.1.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "31068472d4fc5e259bae00532c1fef9f",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.7",
"size": 548514,
"upload_time": "2024-11-13T21:07:28",
"upload_time_iso_8601": "2024-11-13T21:07:28.172847Z",
"url": "https://files.pythonhosted.org/packages/f9/ab/b03c0dca8a4eca983d33c9b15d6e203f223eccdb06f96f335a6e7df2a2a9/gseapy-1.1.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "4b02f2b133a75aa0c5935bdc7fa4fc0ad1689acbdf2a8297bfaff30d974de81d",
"md5": "6425f86b0528d5399a107c42cb533ba5",
"sha256": "fef1ea93db8aa09e7a4b1b3102d52c325a7441795000916b3c3a80639768d4d3"
},
"downloads": -1,
"filename": "gseapy-1.1.4-cp311-cp311-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "6425f86b0528d5399a107c42cb533ba5",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.7",
"size": 481591,
"upload_time": "2024-11-13T21:05:40",
"upload_time_iso_8601": "2024-11-13T21:05:40.780970Z",
"url": "https://files.pythonhosted.org/packages/4b/02/f2b133a75aa0c5935bdc7fa4fc0ad1689acbdf2a8297bfaff30d974de81d/gseapy-1.1.4-cp311-cp311-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "0338e372949c85b5b07e5afd1c3c3be36b354ba96ea4a4b263fb7cb76903cba2",
"md5": "d66e607f1c0cd8ca8117e39a160e35f4",
"sha256": "5f621149cea81116d17789ab551f14863b66449d1a874c0b33b6315b38b16a45"
},
"downloads": -1,
"filename": "gseapy-1.1.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"has_sig": false,
"md5_digest": "d66e607f1c0cd8ca8117e39a160e35f4",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.7",
"size": 530632,
"upload_time": "2024-11-13T21:28:36",
"upload_time_iso_8601": "2024-11-13T21:28:36.475647Z",
"url": "https://files.pythonhosted.org/packages/03/38/e372949c85b5b07e5afd1c3c3be36b354ba96ea4a4b263fb7cb76903cba2/gseapy-1.1.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "2947abcc4505aba4c43b26f9933f577c1899f73148b60db464206addafa26c2e",
"md5": "5bd5e3333d50f67ebc5f2f6bdd2908f6",
"sha256": "a71f21bf1bb789a81badb83150f10395d90dacf1a451c146dd59dc36e412c8d5"
},
"downloads": -1,
"filename": "gseapy-1.1.4-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl",
"has_sig": false,
"md5_digest": "5bd5e3333d50f67ebc5f2f6bdd2908f6",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.7",
"size": 570074,
"upload_time": "2024-11-13T21:07:29",
"upload_time_iso_8601": "2024-11-13T21:07:29.587638Z",
"url": "https://files.pythonhosted.org/packages/29/47/abcc4505aba4c43b26f9933f577c1899f73148b60db464206addafa26c2e/gseapy-1.1.4-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "3dc8249062e2abc688aa1c5d839d21079e82e3949055b6014e4cd758ab01fe64",
"md5": "d6554ea45585a8988d7977abaff4a700",
"sha256": "e7ad94129f62899d542f2d2cbe88381233c52997bd0c9086ddf5903af9a439ed"
},
"downloads": -1,
"filename": "gseapy-1.1.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "d6554ea45585a8988d7977abaff4a700",
"packagetype": "bdist_wheel",
"python_version": "cp311",
"requires_python": ">=3.7",
"size": 548514,
"upload_time": "2024-11-13T21:07:31",
"upload_time_iso_8601": "2024-11-13T21:07:31.711594Z",
"url": "https://files.pythonhosted.org/packages/3d/c8/249062e2abc688aa1c5d839d21079e82e3949055b6014e4cd758ab01fe64/gseapy-1.1.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "bae42ed59edeeb9f27fd8fdc0a62ad198e435ba27483f866ef12c8fd8363265f",
"md5": "7c83db88fe8c6205591622450895fccc",
"sha256": "edc141a3f71efb3c1cd865dff7f9dfe1891dacbde43c614363ff1fc0df9fb442"
},
"downloads": -1,
"filename": "gseapy-1.1.4-cp312-cp312-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "7c83db88fe8c6205591622450895fccc",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.7",
"size": 481486,
"upload_time": "2024-11-13T21:05:42",
"upload_time_iso_8601": "2024-11-13T21:05:42.021607Z",
"url": "https://files.pythonhosted.org/packages/ba/e4/2ed59edeeb9f27fd8fdc0a62ad198e435ba27483f866ef12c8fd8363265f/gseapy-1.1.4-cp312-cp312-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "b3ff983b3039b4b05fc65dd5b8a5f2514c4f275fd106b3783d14e838d0158379",
"md5": "4c41ff2916820b9b376f666f8730c8a3",
"sha256": "dc9d98dfe1eeb3c6b66a025f7beb92feb0a26475ea23f5a76a23e511deef0992"
},
"downloads": -1,
"filename": "gseapy-1.1.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"has_sig": false,
"md5_digest": "4c41ff2916820b9b376f666f8730c8a3",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.7",
"size": 530502,
"upload_time": "2024-11-13T21:28:38",
"upload_time_iso_8601": "2024-11-13T21:28:38.378509Z",
"url": "https://files.pythonhosted.org/packages/b3/ff/983b3039b4b05fc65dd5b8a5f2514c4f275fd106b3783d14e838d0158379/gseapy-1.1.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "da9c18849b086328382fea86623b3361cd656479818ecbcaf81a75a506d9e213",
"md5": "2a25137467f3f84cdad52cef2b7e299f",
"sha256": "a3c70778b37f6b1a6e81c37851025e56b16d399a955133c5ae00205f2f99769e"
},
"downloads": -1,
"filename": "gseapy-1.1.4-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl",
"has_sig": false,
"md5_digest": "2a25137467f3f84cdad52cef2b7e299f",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.7",
"size": 570150,
"upload_time": "2024-11-13T21:07:33",
"upload_time_iso_8601": "2024-11-13T21:07:33.472250Z",
"url": "https://files.pythonhosted.org/packages/da/9c/18849b086328382fea86623b3361cd656479818ecbcaf81a75a506d9e213/gseapy-1.1.4-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "0eb9fd83b9b5d9d90d12807d77f96d83bd34f50230725e012fdc309e334c1e30",
"md5": "f76c934e1a3a1774663c14a555d4ffd8",
"sha256": "597f18ef42f266b22ed3ad966b2506e08820f4fb6d7d1d9c9024a1ac6db69532"
},
"downloads": -1,
"filename": "gseapy-1.1.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "f76c934e1a3a1774663c14a555d4ffd8",
"packagetype": "bdist_wheel",
"python_version": "cp312",
"requires_python": ">=3.7",
"size": 548371,
"upload_time": "2024-11-13T21:07:35",
"upload_time_iso_8601": "2024-11-13T21:07:35.584929Z",
"url": "https://files.pythonhosted.org/packages/0e/b9/fd83b9b5d9d90d12807d77f96d83bd34f50230725e012fdc309e334c1e30/gseapy-1.1.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "c8a0f11b5c25710857f1c341325be5ec93d8651f1dd7627e92572ee7fc520db8",
"md5": "56cc43bf0c540dd37d35deca7307038c",
"sha256": "87544c16c9cafe02a8a8e8e6cef4b4e612fc9b6da18f143b9b5e0e2c3f7808e2"
},
"downloads": -1,
"filename": "gseapy-1.1.4-cp313-cp313-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "56cc43bf0c540dd37d35deca7307038c",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": ">=3.7",
"size": 481487,
"upload_time": "2024-11-13T21:05:43",
"upload_time_iso_8601": "2024-11-13T21:05:43.800202Z",
"url": "https://files.pythonhosted.org/packages/c8/a0/f11b5c25710857f1c341325be5ec93d8651f1dd7627e92572ee7fc520db8/gseapy-1.1.4-cp313-cp313-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "f3e54761d521b93e8c13ed963da8b97a9dfd58e49d8ea893afc115370dd3bf3a",
"md5": "4af17cc9d5ec4fa3df36be920b43ea0d",
"sha256": "664ca318bcae24858693aad62066ed95917d549aa3bf60f63d811d2006f2b404"
},
"downloads": -1,
"filename": "gseapy-1.1.4-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"has_sig": false,
"md5_digest": "4af17cc9d5ec4fa3df36be920b43ea0d",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": ">=3.7",
"size": 530501,
"upload_time": "2024-11-13T21:28:40",
"upload_time_iso_8601": "2024-11-13T21:28:40.252013Z",
"url": "https://files.pythonhosted.org/packages/f3/e5/4761d521b93e8c13ed963da8b97a9dfd58e49d8ea893afc115370dd3bf3a/gseapy-1.1.4-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "b8d65497f762fcb16906f71395bb0aee9fe98289213c1869606bdedad9a3d6c0",
"md5": "ac61f2a8107ca7d365cede2d3d1e6119",
"sha256": "21463527b284ef5f1a21725257ac146fcdfdc6f400bc6bba2eb3704c61bce1b8"
},
"downloads": -1,
"filename": "gseapy-1.1.4-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl",
"has_sig": false,
"md5_digest": "ac61f2a8107ca7d365cede2d3d1e6119",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": ">=3.7",
"size": 570148,
"upload_time": "2024-11-13T21:07:37",
"upload_time_iso_8601": "2024-11-13T21:07:37.839948Z",
"url": "https://files.pythonhosted.org/packages/b8/d6/5497f762fcb16906f71395bb0aee9fe98289213c1869606bdedad9a3d6c0/gseapy-1.1.4-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "ee9baf152f24b0fea36f43428f6720baf32e9f3ebbdd866b77a50f672cf13e19",
"md5": "ab34d4704772f16067c56571f6a01300",
"sha256": "e077bc4a24099868d3fd18cc42e1a87ed00059ae71f08c2f0733429b54325f4b"
},
"downloads": -1,
"filename": "gseapy-1.1.4-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "ab34d4704772f16067c56571f6a01300",
"packagetype": "bdist_wheel",
"python_version": "cp313",
"requires_python": ">=3.7",
"size": 548373,
"upload_time": "2024-11-13T21:07:39",
"upload_time_iso_8601": "2024-11-13T21:07:39.195184Z",
"url": "https://files.pythonhosted.org/packages/ee/9b/af152f24b0fea36f43428f6720baf32e9f3ebbdd866b77a50f672cf13e19/gseapy-1.1.4-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "b1db2ebdcd3f0f33313fdacbe3f58a5bab5fb13cf5b17d676cc4b557faaa55ed",
"md5": "1da52bc65ffdd458c0f4d393c99032d1",
"sha256": "f289a67363e0c34215e28638090f16662331edf1616cb27413307e652d06eba5"
},
"downloads": -1,
"filename": "gseapy-1.1.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"has_sig": false,
"md5_digest": "1da52bc65ffdd458c0f4d393c99032d1",
"packagetype": "bdist_wheel",
"python_version": "cp37",
"requires_python": ">=3.7",
"size": 530625,
"upload_time": "2024-11-13T21:28:42",
"upload_time_iso_8601": "2024-11-13T21:28:42.146756Z",
"url": "https://files.pythonhosted.org/packages/b1/db/2ebdcd3f0f33313fdacbe3f58a5bab5fb13cf5b17d676cc4b557faaa55ed/gseapy-1.1.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "7ce0544c9820c59914ffa4c57e41c7ace38eb98f1babbfd67a78a5b24094125b",
"md5": "c3433fccc9079ac44ae10b89fab61b83",
"sha256": "c5e8aa0e18a7b218d40cb1c5a6e15c9ad6d43a18e72d5f152f39a1e89afb46b7"
},
"downloads": -1,
"filename": "gseapy-1.1.4-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl",
"has_sig": false,
"md5_digest": "c3433fccc9079ac44ae10b89fab61b83",
"packagetype": "bdist_wheel",
"python_version": "cp37",
"requires_python": ">=3.7",
"size": 569985,
"upload_time": "2024-11-13T21:07:41",
"upload_time_iso_8601": "2024-11-13T21:07:41.571025Z",
"url": "https://files.pythonhosted.org/packages/7c/e0/544c9820c59914ffa4c57e41c7ace38eb98f1babbfd67a78a5b24094125b/gseapy-1.1.4-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "89e70b616017e06271438aa83e7b4b3c017267449725aee29e5309210b5055ce",
"md5": "1bc1d8069e972aa0ed09c95885e4bcf5",
"sha256": "74ab3e542b7388d9e2b9626093528d008a0434b0d4a25a2515fdc496f9eef399"
},
"downloads": -1,
"filename": "gseapy-1.1.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "1bc1d8069e972aa0ed09c95885e4bcf5",
"packagetype": "bdist_wheel",
"python_version": "cp37",
"requires_python": ">=3.7",
"size": 548957,
"upload_time": "2024-11-13T21:07:42",
"upload_time_iso_8601": "2024-11-13T21:07:42.961451Z",
"url": "https://files.pythonhosted.org/packages/89/e7/0b616017e06271438aa83e7b4b3c017267449725aee29e5309210b5055ce/gseapy-1.1.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "21481a8a4da38ff633c0e67c7a5273d9ab6457d9f56cc4574bef0bb98725b587",
"md5": "efdf3eec4a03ca8b2fff4c3d5b5fb7c9",
"sha256": "29786e04d05ea07cfc10c10ca360cf37af803b25b49246c3acd749038a9d99c5"
},
"downloads": -1,
"filename": "gseapy-1.1.4-cp38-cp38-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "efdf3eec4a03ca8b2fff4c3d5b5fb7c9",
"packagetype": "bdist_wheel",
"python_version": "cp38",
"requires_python": ">=3.7",
"size": 481805,
"upload_time": "2024-11-13T21:05:45",
"upload_time_iso_8601": "2024-11-13T21:05:45.049059Z",
"url": "https://files.pythonhosted.org/packages/21/48/1a8a4da38ff633c0e67c7a5273d9ab6457d9f56cc4574bef0bb98725b587/gseapy-1.1.4-cp38-cp38-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "fef42abbce026d49be11881e8a75d6a0324fb0d210878d826dfdd1540a5d9675",
"md5": "ce1f3a815517735d330380e42b94951c",
"sha256": "1f1d6dfccd7e0cf09fb72e319af791da0964048f0b04f912b6af29efd3989328"
},
"downloads": -1,
"filename": "gseapy-1.1.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"has_sig": false,
"md5_digest": "ce1f3a815517735d330380e42b94951c",
"packagetype": "bdist_wheel",
"python_version": "cp38",
"requires_python": ">=3.7",
"size": 530615,
"upload_time": "2024-11-13T21:28:44",
"upload_time_iso_8601": "2024-11-13T21:28:44.079309Z",
"url": "https://files.pythonhosted.org/packages/fe/f4/2abbce026d49be11881e8a75d6a0324fb0d210878d826dfdd1540a5d9675/gseapy-1.1.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "f7a9b0d94f44c8bfce412392973bcf7ad6230b5aee2afebba320c4d79fe01d2e",
"md5": "1a887bb2cbb3c529050f55f8eddd753c",
"sha256": "65dffefb9ccaf1a77f27b0dd688f0345af3bf9304e2c456b93ff4880aa7855c9"
},
"downloads": -1,
"filename": "gseapy-1.1.4-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl",
"has_sig": false,
"md5_digest": "1a887bb2cbb3c529050f55f8eddd753c",
"packagetype": "bdist_wheel",
"python_version": "cp38",
"requires_python": ">=3.7",
"size": 570003,
"upload_time": "2024-11-13T21:07:44",
"upload_time_iso_8601": "2024-11-13T21:07:44.339627Z",
"url": "https://files.pythonhosted.org/packages/f7/a9/b0d94f44c8bfce412392973bcf7ad6230b5aee2afebba320c4d79fe01d2e/gseapy-1.1.4-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "5e27f9321746ff2c99cd2bcbbccc01406a18b2a561dfc510df1b57e625557f2b",
"md5": "8a16ac619f7fc369fa8467b4bc4b28e1",
"sha256": "864c4fb6ed993911d5ccc9be868968f4841b11a80b27c802dcf1e6a15a8c50c9"
},
"downloads": -1,
"filename": "gseapy-1.1.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "8a16ac619f7fc369fa8467b4bc4b28e1",
"packagetype": "bdist_wheel",
"python_version": "cp38",
"requires_python": ">=3.7",
"size": 549065,
"upload_time": "2024-11-13T21:07:46",
"upload_time_iso_8601": "2024-11-13T21:07:46.477992Z",
"url": "https://files.pythonhosted.org/packages/5e/27/f9321746ff2c99cd2bcbbccc01406a18b2a561dfc510df1b57e625557f2b/gseapy-1.1.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "773bff3bca6839a7d08521572e43c50b09668e1d7304bbb2d6c6f675fc67a62c",
"md5": "757953ebb96c24298d40208601ef8522",
"sha256": "6064b816b034521b5de03f9e1ccf947d795b5d7df67c677d14cbecdbe8fcc6dc"
},
"downloads": -1,
"filename": "gseapy-1.1.4-cp39-cp39-macosx_11_0_arm64.whl",
"has_sig": false,
"md5_digest": "757953ebb96c24298d40208601ef8522",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.7",
"size": 481488,
"upload_time": "2024-11-13T21:05:47",
"upload_time_iso_8601": "2024-11-13T21:05:47.182356Z",
"url": "https://files.pythonhosted.org/packages/77/3b/ff3bca6839a7d08521572e43c50b09668e1d7304bbb2d6c6f675fc67a62c/gseapy-1.1.4-cp39-cp39-macosx_11_0_arm64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "61fe85781809d543d731b532261a81d5796699df74a4e1dce41c1974a76e541b",
"md5": "3a1e5992a5c390e9fb11760120d3d5ff",
"sha256": "6fb3963cfbbbaf0a0183bdfcd41e418acb12f7a82926d046976b43906121e2fb"
},
"downloads": -1,
"filename": "gseapy-1.1.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"has_sig": false,
"md5_digest": "3a1e5992a5c390e9fb11760120d3d5ff",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.7",
"size": 530752,
"upload_time": "2024-11-13T21:28:46",
"upload_time_iso_8601": "2024-11-13T21:28:46.009340Z",
"url": "https://files.pythonhosted.org/packages/61/fe/85781809d543d731b532261a81d5796699df74a4e1dce41c1974a76e541b/gseapy-1.1.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "a4da7c6565abd284bdf9ebf043718b7ac01d9567b78d3a1561cef216e57d41f3",
"md5": "aa772ec173d7537f1932f956289696bb",
"sha256": "d94345a1e18fcbd0a6b792f415183b3176bf0d3b4ddda76de5656d42903cf194"
},
"downloads": -1,
"filename": "gseapy-1.1.4-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl",
"has_sig": false,
"md5_digest": "aa772ec173d7537f1932f956289696bb",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.7",
"size": 570213,
"upload_time": "2024-11-13T21:07:49",
"upload_time_iso_8601": "2024-11-13T21:07:49.536242Z",
"url": "https://files.pythonhosted.org/packages/a4/da/7c6565abd284bdf9ebf043718b7ac01d9567b78d3a1561cef216e57d41f3/gseapy-1.1.4-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "a8ee0573f0a9797fae5254ee64ced449703e3b75c80b48099242c5712e13bb5a",
"md5": "1eb03801899c0a217bf47cbb55493397",
"sha256": "9328ee3943806652bdabb4d45382b7df83c7b5135b79887a34c19368ed091b06"
},
"downloads": -1,
"filename": "gseapy-1.1.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"has_sig": false,
"md5_digest": "1eb03801899c0a217bf47cbb55493397",
"packagetype": "bdist_wheel",
"python_version": "cp39",
"requires_python": ">=3.7",
"size": 548743,
"upload_time": "2024-11-13T21:07:51",
"upload_time_iso_8601": "2024-11-13T21:07:51.503560Z",
"url": "https://files.pythonhosted.org/packages/a8/ee/0573f0a9797fae5254ee64ced449703e3b75c80b48099242c5712e13bb5a/gseapy-1.1.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "12920a4e24f4a0ac772e8ec652f299a89292eb66d67e329579e1ea48cc006250",
"md5": "96bfceba6c35a878b16f3f7059aad147",
"sha256": "7e858752d7684b1abed124c585f3ca2f156ff22985575234232a54c57b88ba66"
},
"downloads": -1,
"filename": "gseapy-1.1.4.tar.gz",
"has_sig": false,
"md5_digest": "96bfceba6c35a878b16f3f7059aad147",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.7",
"size": 108006,
"upload_time": "2024-11-13T21:00:43",
"upload_time_iso_8601": "2024-11-13T21:00:43.756103Z",
"url": "https://files.pythonhosted.org/packages/12/92/0a4e24f4a0ac772e8ec652f299a89292eb66d67e329579e1ea48cc006250/gseapy-1.1.4.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-11-13 21:00:43",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "zqfang",
"github_project": "gseapy",
"travis_ci": false,
"coveralls": false,
"github_actions": true,
"requirements": [],
"tox": true,
"lcname": "gseapy"
}