scdata


Namescdata JSON
Version 1.3.0 PyPI version JSON
download
home_pagehttps://github.com/fablabbcn/smartcitizen-data
SummaryAnalysis of sensors and time series data
upload_time2025-10-18 09:06:28
maintainerNone
docs_urlNone
authoroscgonfer
requires_python>=3.9
licenseGNU-GPL3.0
keywords air sensors smart citizen
VCS
bugtrack_url
requirements branca Flask folium geopy Jinja2 matplotlib pandas pydantic pytest PyYAML requests scipy scikit-learn seaborn smartcitizen-connector termcolor tqdm timezonefinder urllib3 boto3 awswrangler
Travis-CI No Travis.
coveralls test coverage No coveralls.
            Smart Citizen Data
=======

[![DOI](https://zenodo.org/badge/97752018.svg)](https://zenodo.org/badge/latestdoi/97752018)
[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/fablabbcn/smartcitizen-data-framework/master?filepath=%2Fexamples%2Fnotebooks)
[![PyPI version](https://badge.fury.io/py/scdata.svg)](https://badge.fury.io/py/scdata)
[![Python application](https://github.com/fablabbcn/smartcitizen-data/actions/workflows/python-multiple-versions.yml/badge.svg)](https://github.com/fablabbcn/smartcitizen-data/actions/workflows/python-multiple-versions.yml)

Welcome to **SmartCitizen Data**. This is a data analysis framework for working with sensor data in different ways:

- Interacting with several sensors APIs
- Clean data, export and calculate metrics
- Model sensor data and calibrate sensors
- Generate data visualisations - matplotlib, ~[plotly](https://plotly.com/)~ or [uplot](https://leeoniya.github.io/uPlot)
- Generate analysis reports in html or pdf and upload them to [Zenodo](http://zenodo.org)

## Installation

You can check it out in the [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/fablabbcn/smartcitizen-data-framework/master?filepath=%2Fexamples%2Fnotebooks) before installing if you want. Works with `Python 3.*` (tested between 3.9 and 3.11).

You can just run:

```
pip install scdata
```

### Work on the source code

Simply clone the repository with:

```
git clone https://github.com/fablabbcn/smartcitizen-data.git
cd smartcitizen-data
```

Install `scdata` package with requirements:

```
python setup.py install
```

Or if you want to edit:

```
cd scdata
pip install --editable .
```

### Tokens and config

A configuration file is available at `~/.config/scdata/config.yaml`, which contains a set of configurable variables to allow or not the local storage of relevant data in the data folder, normally in `~/.cache/scdata`:

```
data:
  cached_data_margin: 2
  load_cached_api: true
  reload_metadata: true
  store_cached_api: true
paths:
  config: /Users/username/.config/scdata
  data: /Users/username/.cache/scdata
  export: /Users/username/.cache/scdata/export
  interim: /Users/username/.cache/scdata/interim
  inventory: ''
  models: /Users/username/.cache/scdata/models
  processed: /Users/username/.cache/scdata/processed
  raw: /Users/username/.cache/scdata/raw
  reports: /Users/username/.cache/scdata/reports
  uploads: /Users/username/.cache/scdata/uploads
zenodo_real_base_url: https://zenodo.org
zenodo_sandbox_base_url: http://sandbox.zenodo.org
```

Also, `.env` files will be picked from `~/.cache/scdata`. An [env.example](env.example) is provided. If you want to upload data to [Zenodo](http://zenodo.org), you will need to fill set an environment variable called `ZENODO_TOKEN` in your environment. The `.env` file is not mandatory for `scdata` to work. It only serves for authentication if you want to `POST` or `GET` data without throttling. You can still do `GET` requests but they will be throttled if not authenticated/authorized by the platform. See [user roles](https://developer.smartcitizen.me/#authentication) for more info.

### Using with jupyter lab (optional)

It can also be used with `jupyter lab` or `jupyter`. For this [install juypterlab](https://github.com/jupyterlab/jupyterlab).

## Contribute

Issues and PR more than welcome!

## Funding

This work has received funding from the European Union's Horizon 2020 research and innovation program under the grant agreement [No. 689954](https://cordis.europa.eu/project/rcn/202639_en.html)

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/fablabbcn/smartcitizen-data",
    "name": "scdata",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.9",
    "maintainer_email": null,
    "keywords": "air, sensors, Smart Citizen",
    "author": "oscgonfer",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/d3/63/e6fd937ff0334c39f3e74cecbe996202adffbd1501ba3eb32dd8f81fc216/scdata-1.3.0.tar.gz",
    "platform": null,
    "description": "Smart Citizen Data\n=======\n\n[![DOI](https://zenodo.org/badge/97752018.svg)](https://zenodo.org/badge/latestdoi/97752018)\n[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/fablabbcn/smartcitizen-data-framework/master?filepath=%2Fexamples%2Fnotebooks)\n[![PyPI version](https://badge.fury.io/py/scdata.svg)](https://badge.fury.io/py/scdata)\n[![Python application](https://github.com/fablabbcn/smartcitizen-data/actions/workflows/python-multiple-versions.yml/badge.svg)](https://github.com/fablabbcn/smartcitizen-data/actions/workflows/python-multiple-versions.yml)\n\nWelcome to **SmartCitizen Data**. This is a data analysis framework for working with sensor data in different ways:\n\n- Interacting with several sensors APIs\n- Clean data, export and calculate metrics\n- Model sensor data and calibrate sensors\n- Generate data visualisations - matplotlib, ~[plotly](https://plotly.com/)~ or [uplot](https://leeoniya.github.io/uPlot)\n- Generate analysis reports in html or pdf and upload them to [Zenodo](http://zenodo.org)\n\n## Installation\n\nYou can check it out in the [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/fablabbcn/smartcitizen-data-framework/master?filepath=%2Fexamples%2Fnotebooks) before installing if you want. Works with `Python 3.*` (tested between 3.9 and 3.11).\n\nYou can just run:\n\n```\npip install scdata\n```\n\n### Work on the source code\n\nSimply clone the repository with:\n\n```\ngit clone https://github.com/fablabbcn/smartcitizen-data.git\ncd smartcitizen-data\n```\n\nInstall `scdata` package with requirements:\n\n```\npython setup.py install\n```\n\nOr if you want to edit:\n\n```\ncd scdata\npip install --editable .\n```\n\n### Tokens and config\n\nA configuration file is available at `~/.config/scdata/config.yaml`, which contains a set of configurable variables to allow or not the local storage of relevant data in the data folder, normally in `~/.cache/scdata`:\n\n```\ndata:\n  cached_data_margin: 2\n  load_cached_api: true\n  reload_metadata: true\n  store_cached_api: true\npaths:\n  config: /Users/username/.config/scdata\n  data: /Users/username/.cache/scdata\n  export: /Users/username/.cache/scdata/export\n  interim: /Users/username/.cache/scdata/interim\n  inventory: ''\n  models: /Users/username/.cache/scdata/models\n  processed: /Users/username/.cache/scdata/processed\n  raw: /Users/username/.cache/scdata/raw\n  reports: /Users/username/.cache/scdata/reports\n  uploads: /Users/username/.cache/scdata/uploads\nzenodo_real_base_url: https://zenodo.org\nzenodo_sandbox_base_url: http://sandbox.zenodo.org\n```\n\nAlso, `.env` files will be picked from `~/.cache/scdata`. An [env.example](env.example) is provided. If you want to upload data to [Zenodo](http://zenodo.org), you will need to fill set an environment variable called `ZENODO_TOKEN` in your environment. The `.env` file is not mandatory for `scdata` to work. It only serves for authentication if you want to `POST` or `GET` data without throttling. You can still do `GET` requests but they will be throttled if not authenticated/authorized by the platform. See [user roles](https://developer.smartcitizen.me/#authentication) for more info.\n\n### Using with jupyter lab (optional)\n\nIt can also be used with `jupyter lab` or `jupyter`. For this [install juypterlab](https://github.com/jupyterlab/jupyterlab).\n\n## Contribute\n\nIssues and PR more than welcome!\n\n## Funding\n\nThis work has received funding from the European Union's Horizon 2020 research and innovation program under the grant agreement [No. 689954](https://cordis.europa.eu/project/rcn/202639_en.html)\n",
    "bugtrack_url": null,
    "license": "GNU-GPL3.0",
    "summary": "Analysis of sensors and time series data",
    "version": "1.3.0",
    "project_urls": {
        "Documentation": "https://docs.smartcitizen.me/",
        "Homepage": "https://github.com/fablabbcn/smartcitizen-data",
        "Source Code": "https://github.com/fablabbcn/smartcitizen-data"
    },
    "split_keywords": [
        "air",
        " sensors",
        " smart citizen"
    ],
    "urls": [
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "d9cb08a6bf1271cba13dc134be113ae5bd8ce09eaa08ef6e7a2f02b2d13d55ef",
                "md5": "d41c72774a70870e0314e605994a9c0b",
                "sha256": "09e14007c3a40dd26cfc7d5246d50e1ffbec7bbe9a234ed1c40525a814c7c108"
            },
            "downloads": -1,
            "filename": "scdata-1.3.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "d41c72774a70870e0314e605994a9c0b",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.9",
            "size": 333627,
            "upload_time": "2025-10-18T09:06:26",
            "upload_time_iso_8601": "2025-10-18T09:06:26.489491Z",
            "url": "https://files.pythonhosted.org/packages/d9/cb/08a6bf1271cba13dc134be113ae5bd8ce09eaa08ef6e7a2f02b2d13d55ef/scdata-1.3.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": null,
            "digests": {
                "blake2b_256": "d363e6fd937ff0334c39f3e74cecbe996202adffbd1501ba3eb32dd8f81fc216",
                "md5": "2d553848bcd2df5dd504481238e70b8c",
                "sha256": "bd1aa9b0f9653b475c38a987c8ec5d5e3ee3a9fced79840bd4213fcebb68e92d"
            },
            "downloads": -1,
            "filename": "scdata-1.3.0.tar.gz",
            "has_sig": false,
            "md5_digest": "2d553848bcd2df5dd504481238e70b8c",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.9",
            "size": 310024,
            "upload_time": "2025-10-18T09:06:28",
            "upload_time_iso_8601": "2025-10-18T09:06:28.054044Z",
            "url": "https://files.pythonhosted.org/packages/d3/63/e6fd937ff0334c39f3e74cecbe996202adffbd1501ba3eb32dd8f81fc216/scdata-1.3.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-10-18 09:06:28",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "fablabbcn",
    "github_project": "smartcitizen-data",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": true,
    "requirements": [
        {
            "name": "branca",
            "specs": [
                [
                    "~=",
                    "0.4.0"
                ]
            ]
        },
        {
            "name": "Flask",
            "specs": [
                [
                    "~=",
                    "2.2.2"
                ]
            ]
        },
        {
            "name": "folium",
            "specs": [
                [
                    "~=",
                    "0.12.1"
                ]
            ]
        },
        {
            "name": "geopy",
            "specs": [
                [
                    "~=",
                    "1.21.0"
                ]
            ]
        },
        {
            "name": "Jinja2",
            "specs": [
                [
                    "~=",
                    "3.1.2"
                ]
            ]
        },
        {
            "name": "matplotlib",
            "specs": []
        },
        {
            "name": "pandas",
            "specs": [
                [
                    "~=",
                    "2.2.2"
                ]
            ]
        },
        {
            "name": "pydantic",
            "specs": []
        },
        {
            "name": "pytest",
            "specs": []
        },
        {
            "name": "PyYAML",
            "specs": [
                [
                    "~=",
                    "6.0.1"
                ]
            ]
        },
        {
            "name": "requests",
            "specs": []
        },
        {
            "name": "scipy",
            "specs": []
        },
        {
            "name": "scikit-learn",
            "specs": []
        },
        {
            "name": "seaborn",
            "specs": []
        },
        {
            "name": "smartcitizen-connector",
            "specs": []
        },
        {
            "name": "termcolor",
            "specs": [
                [
                    "==",
                    "1.1.0"
                ]
            ]
        },
        {
            "name": "tqdm",
            "specs": [
                [
                    "~=",
                    "4.50.2"
                ]
            ]
        },
        {
            "name": "timezonefinder",
            "specs": [
                [
                    "~=",
                    "6.1.9"
                ]
            ]
        },
        {
            "name": "urllib3",
            "specs": []
        },
        {
            "name": "boto3",
            "specs": []
        },
        {
            "name": "awswrangler",
            "specs": []
        }
    ],
    "lcname": "scdata"
}
        
Elapsed time: 4.12871s