scikit-ued


Namescikit-ued JSON
Version 2.1.14 PyPI version JSON
download
home_pagehttp://scikit-ued.readthedocs.io
SummaryCollection of algorithms and functions for ultrafast electron scattering
upload_time2023-03-18 20:30:11
maintainerLaurent P. René de Cotret
docs_urlNone
authorLaurent P. René de Cotret
requires_python>=3.7
licenseGPLv3
keywords ultrafast electron scattering
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            scikit-ued
==========

[![Documentation Build Status](https://readthedocs.org/projects/scikit-ued/badge/?version=master)](http://scikit-ued.readthedocs.io) [![PyPI Version](https://img.shields.io/pypi/v/scikit-ued.svg)](https://pypi.org/project/scikit-ued/) [![Conda-forge Version](https://img.shields.io/conda/vn/conda-forge/scikit-ued.svg)](https://anaconda.org/conda-forge/scikit-ued) [![DOI badge](https://img.shields.io/badge/DOI-10.1186%2Fs40679--018--0060--y-blue)](https://doi.org/10.1186/s40679-018-0060-y)

Collection of algorithms and functions for ultrafast electron diffraction. It aims to be a fully-tested package taking advantage of Python's most recent features.

For examples, see our [tutorials](https://scikit-ued.readthedocs.io/).

API Reference
-------------

The [API Reference on readthedocs.io](https://scikit-ued.readthedocs.io) provides API-level documentation, as well as tutorials.

Installation
------------

scikit-ued is available on PyPI; it can be installed with [pip](https://pip.pypa.io):

    python -m pip install scikit-ued

To also install optional dependencies required to view diffraction images interactively:

    python -m pip install scikit-ued[diffshow]

scikit-ued is also available on the conda-forge channel for the [conda package manager](https://conda.io/docs/):

    conda config --add channels conda-forge
    conda install scikit-ued

To install the latest development version from [Github](https://github.com/LaurentRDC/scikit-ued):

    python -m pip install git+https://github.com/LaurentRDC/scikit-ued.git

After installing scikit-ued you can use it like any other Python module
as `skued`.

Each version is tested against **Python 3.7+**. If you are using a
different version, tests can be run using the `pytest` package.

Optional dependencies
---------------------

For displaying diffraction images with interactive contrast using the
`skued.diffshow` function, PyQtGraph is required.

Contributing
------------

If you want to contribute to `scikit-ued`, take a look at [`CONTRIBUTING.md`](https://github.com/LaurentRDC/scikit-ued/blob/master/CONTRIBUTING.md).

Related projects
----------------

Streaming operations on NumPy arrays are available in the [npstreams package](https://pypi.org/pypi/npstreams).

Interactive exploration of ultrafast electron diffraction data with the [iris-ued package](https://pypi.org/project/iris-ued/).

Crystal structure manipulation (including symmetry-determination) with the [crystals package](https://pypi.org/project/crystals/). (Included
with scikit-ued)

A graphical user interface for the dual-tree complex wavelet transform
baseline-removal routine is available as a [separate package](https://pypi.org/pypi/dtgui).

Citations
---------

If you find this software useful, please consider citing the following
publication:

> L. P. René de Cotret, M. R. Otto, M. J. Stern. and B. J. Siwick, *An open-source software ecosystem for the interactive exploration of ultrafast electron scattering data*, Advanced Structural and Chemical Imaging 4:11 (2018) [DOI: 10.1186/s40679-018-0060-y.](https://ascimaging.springeropen.com/articles/10.1186/s40679-018-0060-y)

If you are using the baseline-removal functionality of scikit-ued,
please consider citing the following publication:

> L. P. René de Cotret and B. J. Siwick, *A general method for baseline-removal in ultrafast electron powder diffraction data using the dual-tree complex wavelet transform*, Struct. Dyn. 4 (2017) [DOI: 10.1063/1.4972518](https://doi.org/10.1063/1.4972518).


Support / Report Issues
-----------------------

All support requests and issue reports should be [filed on Github as an issue](https://github.com/LaurentRDC/scikit-ued/issues).

License
-------

scikit-ued is made available under the GPLv3 License. For more details,
see [LICENSE.txt](https://github.com/LaurentRDC/scikit-ued/blob/master/LICENSE.txt).



            

Raw data

            {
    "_id": null,
    "home_page": "http://scikit-ued.readthedocs.io",
    "name": "scikit-ued",
    "maintainer": "Laurent P. Ren\u00e9 de Cotret",
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": "laurent.renedecotret@mail.mcgill.ca",
    "keywords": "ultrafast electron scattering",
    "author": "Laurent P. Ren\u00e9 de Cotret",
    "author_email": "laurent.renedecotret@mail.mcgill.ca",
    "download_url": "https://files.pythonhosted.org/packages/8d/51/c5b63d4d460f6824dd7b8d19503c4acfea6aa74d4638877be8f771207e5f/scikit-ued-2.1.14.tar.gz",
    "platform": null,
    "description": "scikit-ued\n==========\n\n[![Documentation Build Status](https://readthedocs.org/projects/scikit-ued/badge/?version=master)](http://scikit-ued.readthedocs.io) [![PyPI Version](https://img.shields.io/pypi/v/scikit-ued.svg)](https://pypi.org/project/scikit-ued/) [![Conda-forge Version](https://img.shields.io/conda/vn/conda-forge/scikit-ued.svg)](https://anaconda.org/conda-forge/scikit-ued) [![DOI badge](https://img.shields.io/badge/DOI-10.1186%2Fs40679--018--0060--y-blue)](https://doi.org/10.1186/s40679-018-0060-y)\n\nCollection of algorithms and functions for ultrafast electron diffraction. It aims to be a fully-tested package taking advantage of Python's most recent features.\n\nFor examples, see our [tutorials](https://scikit-ued.readthedocs.io/).\n\nAPI Reference\n-------------\n\nThe [API Reference on readthedocs.io](https://scikit-ued.readthedocs.io) provides API-level documentation, as well as tutorials.\n\nInstallation\n------------\n\nscikit-ued is available on PyPI; it can be installed with [pip](https://pip.pypa.io):\n\n    python -m pip install scikit-ued\n\nTo also install optional dependencies required to view diffraction images interactively:\n\n    python -m pip install scikit-ued[diffshow]\n\nscikit-ued is also available on the conda-forge channel for the [conda package manager](https://conda.io/docs/):\n\n    conda config --add channels conda-forge\n    conda install scikit-ued\n\nTo install the latest development version from [Github](https://github.com/LaurentRDC/scikit-ued):\n\n    python -m pip install git+https://github.com/LaurentRDC/scikit-ued.git\n\nAfter installing scikit-ued you can use it like any other Python module\nas `skued`.\n\nEach version is tested against **Python 3.7+**. If you are using a\ndifferent version, tests can be run using the `pytest` package.\n\nOptional dependencies\n---------------------\n\nFor displaying diffraction images with interactive contrast using the\n`skued.diffshow` function, PyQtGraph is required.\n\nContributing\n------------\n\nIf you want to contribute to `scikit-ued`, take a look at [`CONTRIBUTING.md`](https://github.com/LaurentRDC/scikit-ued/blob/master/CONTRIBUTING.md).\n\nRelated projects\n----------------\n\nStreaming operations on NumPy arrays are available in the [npstreams package](https://pypi.org/pypi/npstreams).\n\nInteractive exploration of ultrafast electron diffraction data with the [iris-ued package](https://pypi.org/project/iris-ued/).\n\nCrystal structure manipulation (including symmetry-determination) with the [crystals package](https://pypi.org/project/crystals/). (Included\nwith scikit-ued)\n\nA graphical user interface for the dual-tree complex wavelet transform\nbaseline-removal routine is available as a [separate package](https://pypi.org/pypi/dtgui).\n\nCitations\n---------\n\nIf you find this software useful, please consider citing the following\npublication:\n\n> L. P. Ren\u00e9 de Cotret, M. R. Otto, M. J. Stern. and B. J. Siwick, *An open-source software ecosystem for the interactive exploration of ultrafast electron scattering data*, Advanced Structural and Chemical Imaging 4:11 (2018) [DOI: 10.1186/s40679-018-0060-y.](https://ascimaging.springeropen.com/articles/10.1186/s40679-018-0060-y)\n\nIf you are using the baseline-removal functionality of scikit-ued,\nplease consider citing the following publication:\n\n> L. P. Ren\u00e9 de Cotret and B. J. Siwick, *A general method for baseline-removal in ultrafast electron powder diffraction data using the dual-tree complex wavelet transform*, Struct. Dyn. 4 (2017) [DOI: 10.1063/1.4972518](https://doi.org/10.1063/1.4972518).\n\n\nSupport / Report Issues\n-----------------------\n\nAll support requests and issue reports should be [filed on Github as an issue](https://github.com/LaurentRDC/scikit-ued/issues).\n\nLicense\n-------\n\nscikit-ued is made available under the GPLv3 License. For more details,\nsee [LICENSE.txt](https://github.com/LaurentRDC/scikit-ued/blob/master/LICENSE.txt).\n\n\n",
    "bugtrack_url": null,
    "license": "GPLv3",
    "summary": "Collection of algorithms and functions for ultrafast electron scattering",
    "version": "2.1.14",
    "split_keywords": [
        "ultrafast",
        "electron",
        "scattering"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "c61982a74993778a18c12051b20b2aa7ca3c410116dd812b41c849a610aeb7d2",
                "md5": "2be6b944a06becddadbdae3fc17a663f",
                "sha256": "99862347f4daadca670283e96a41104840c6c12e4931bc28f40b2e03cc45cd9a"
            },
            "downloads": -1,
            "filename": "scikit_ued-2.1.14-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "2be6b944a06becddadbdae3fc17a663f",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 294172,
            "upload_time": "2023-03-18T20:30:10",
            "upload_time_iso_8601": "2023-03-18T20:30:10.122308Z",
            "url": "https://files.pythonhosted.org/packages/c6/19/82a74993778a18c12051b20b2aa7ca3c410116dd812b41c849a610aeb7d2/scikit_ued-2.1.14-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "8d51c5b63d4d460f6824dd7b8d19503c4acfea6aa74d4638877be8f771207e5f",
                "md5": "5c3b607f6993378c9dc891c7472eb36b",
                "sha256": "360b03fff1d0fe0f5225d21cf4d3d4d6d623411ed995ce0b9c8ff6fff24978fe"
            },
            "downloads": -1,
            "filename": "scikit-ued-2.1.14.tar.gz",
            "has_sig": false,
            "md5_digest": "5c3b607f6993378c9dc891c7472eb36b",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 265271,
            "upload_time": "2023-03-18T20:30:11",
            "upload_time_iso_8601": "2023-03-18T20:30:11.940748Z",
            "url": "https://files.pythonhosted.org/packages/8d/51/c5b63d4d460f6824dd7b8d19503c4acfea6aa74d4638877be8f771207e5f/scikit-ued-2.1.14.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-03-18 20:30:11",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "lcname": "scikit-ued"
}
        
Elapsed time: 0.04778s