102183051-topsis


Name102183051-topsis JSON
Version 0.0.1 PyPI version JSON
download
home_page
SummaryA Topsis Package
upload_time2023-01-23 00:14:12
maintainer
docs_urlNone
authorSarthak Tiwari
requires_python>=3.5
license
keywords python video stream video stream camera stream sockets
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # TOPSIS

Submitted By: **Sarthak Tiwari | 102183051**

***

## What is TOPSIS?

**T**echnique for **O**rder **P**reference by **S**imilarity to **I**deal **S**olution 
(TOPSIS) originated in the 1980s as a multi-criteria decision making method.

## How to install this package:
```bash
>> pip install -e .[dev]
```

## After installation, in Command Prompt/Terminal in pwd/current dir:
```
>> topsis <InputDataFile> <Weights> <Impacts> <ResultFileName>
```

Weights (`weights`) may not be normalised but will be normalised in the code.
**Note:** To avoid errors - 
Input file must contain three or more columns.
2nd to last columns must contain numeric values only.
Number of weights, number of impacts and number of columns (from 2 nd to last columns) must
be same.
Impacts must be either +ve or -ve.
Impacts and weights must be separated by ‘,’ (comma).

## InputDataFile (data.csv) - an example

The decision matrix should be constructed with each row representing a Model alternative and each column representing a criterion like Correlation, R<sup>2</sup>, Root Mean Squared Error, Accuracy, etc. 

Model | Corr | Rseq | RMSE | Accuracy
------------ | ------------- | ------------ | ------------- | ------------
M1 |	0.79 | 0.62	| 1.25 | 60.89
M2 |    0.66 | 0.44	| 2.89 | 63.07
M3 |	0.56 | 0.31	| 1.57 | 62.87
M4 |	0.82 | 0.67	| 2.68 | 70.19
M5 |	0.75 | 0.56	| 1.3  | 80.39

## Output file (result.csv) - 
Based on the above input file and setting weights as "1,2,1,1" and impacts as "+,-,-,+".

Model | Corr | Rseq | RMSE | Accuracy | Topsis Score | Rank
------------ | ------------- | ------------ | ------------- | ------------ | ------------- | ------------- 
M1 |	0.79 | 0.62	| 1.25 | 60.89 | 0.423744391359611 | 4
M2 |  0.66 | 0.44	| 2.89 | 63.07 | 0.0.467426368298297 | 3
M3 |	0.56 | 0.31	| 1.57 | 62.87 | 0.760230957034903 | 1
M4 |	0.82 | 0.67	| 2.68 | 70.19 | 0.207772533881566 | 5
M5 |	0.75 | 0.56	| 1.3	 | 80.39 | 0.504864457803718 | 2

The output file contains columns of input file along with two additional columns having Topsis Score and Rank.


            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "102183051-topsis",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.5",
    "maintainer_email": "",
    "keywords": "python,video,stream,video stream,camera stream,sockets",
    "author": "Sarthak Tiwari",
    "author_email": "luckysarthak5@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/f5/18/cc528da0a6f65592ca99a401676d905447f65ac54f0f22da587a5912e49e/102183051-topsis-0.0.1.tar.gz",
    "platform": null,
    "description": "# TOPSIS\r\n\r\nSubmitted By: **Sarthak Tiwari | 102183051**\r\n\r\n***\r\n\r\n## What is TOPSIS?\r\n\r\n**T**echnique for **O**rder **P**reference by **S**imilarity to **I**deal **S**olution \r\n(TOPSIS) originated in the 1980s as a multi-criteria decision making method.\r\n\r\n## How to install this package:\r\n```bash\r\n>> pip install -e .[dev]\r\n```\r\n\r\n## After installation, in Command Prompt/Terminal in pwd/current dir:\r\n```\r\n>> topsis <InputDataFile> <Weights> <Impacts> <ResultFileName>\r\n```\r\n\r\nWeights (`weights`) may not be normalised but will be normalised in the code.\r\n**Note:** To avoid errors - \r\nInput file must contain three or more columns.\r\n2nd to last columns must contain numeric values only.\r\nNumber of weights, number of impacts and number of columns (from 2 nd to last columns) must\r\nbe same.\r\nImpacts must be either +ve or -ve.\r\nImpacts and weights must be separated by \u00e2\u20ac\u02dc,\u00e2\u20ac\u2122 (comma).\r\n\r\n## InputDataFile (data.csv) - an example\r\n\r\nThe decision matrix should be constructed with each row representing a Model alternative and each column representing a criterion like Correlation, R<sup>2</sup>, Root Mean Squared Error, Accuracy, etc. \r\n\r\nModel | Corr | Rseq | RMSE | Accuracy\r\n------------ | ------------- | ------------ | ------------- | ------------\r\nM1 |\t0.79 | 0.62\t| 1.25 | 60.89\r\nM2 |    0.66 | 0.44\t| 2.89 | 63.07\r\nM3 |\t0.56 | 0.31\t| 1.57 | 62.87\r\nM4 |\t0.82 | 0.67\t| 2.68 | 70.19\r\nM5 |\t0.75 | 0.56\t| 1.3  | 80.39\r\n\r\n## Output file (result.csv) - \r\nBased on the above input file and setting weights as \"1,2,1,1\" and impacts as \"+,-,-,+\".\r\n\r\nModel | Corr | Rseq | RMSE | Accuracy | Topsis Score | Rank\r\n------------ | ------------- | ------------ | ------------- | ------------ | ------------- | ------------- \r\nM1 |\t0.79 | 0.62\t| 1.25 | 60.89 | 0.423744391359611 | 4\r\nM2 |  0.66 | 0.44\t| 2.89 | 63.07 | 0.0.467426368298297 | 3\r\nM3 |\t0.56 | 0.31\t| 1.57 | 62.87 | 0.760230957034903 | 1\r\nM4 |\t0.82 | 0.67\t| 2.68 | 70.19 | 0.207772533881566 | 5\r\nM5 |\t0.75 | 0.56\t| 1.3\t | 80.39 | 0.504864457803718 | 2\r\n\r\nThe output file contains columns of input file along with two additional columns having Topsis Score and Rank.\r\n\r\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "A Topsis Package",
    "version": "0.0.1",
    "split_keywords": [
        "python",
        "video",
        "stream",
        "video stream",
        "camera stream",
        "sockets"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "cf177957001a3a78172fc3eb39e8f062359586887341efeb4aa0511eba872baa",
                "md5": "a9735c532438a59c7722a5e132589055",
                "sha256": "baac4f5f40a949a7fd59701eb344fc7f2b78eb53449c9a543a9d66f671eeece3"
            },
            "downloads": -1,
            "filename": "102183051_topsis-0.0.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "a9735c532438a59c7722a5e132589055",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.5",
            "size": 15053,
            "upload_time": "2023-01-23T00:14:09",
            "upload_time_iso_8601": "2023-01-23T00:14:09.545123Z",
            "url": "https://files.pythonhosted.org/packages/cf/17/7957001a3a78172fc3eb39e8f062359586887341efeb4aa0511eba872baa/102183051_topsis-0.0.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "f518cc528da0a6f65592ca99a401676d905447f65ac54f0f22da587a5912e49e",
                "md5": "010ae3f922bed782a67fe206db99f838",
                "sha256": "91fe6005792b274ebe6c216e467c52a423ce3314ce6aae19d890ce58ca440ec2"
            },
            "downloads": -1,
            "filename": "102183051-topsis-0.0.1.tar.gz",
            "has_sig": false,
            "md5_digest": "010ae3f922bed782a67fe206db99f838",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.5",
            "size": 16157,
            "upload_time": "2023-01-23T00:14:12",
            "upload_time_iso_8601": "2023-01-23T00:14:12.059613Z",
            "url": "https://files.pythonhosted.org/packages/f5/18/cc528da0a6f65592ca99a401676d905447f65ac54f0f22da587a5912e49e/102183051-topsis-0.0.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-01-23 00:14:12",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "lcname": "102183051-topsis"
}
        
Elapsed time: 0.08711s