# TOPSIS
Submitted By: **Sarthak Tiwari | 102183051**
***
## What is TOPSIS?
**T**echnique for **O**rder **P**reference by **S**imilarity to **I**deal **S**olution
(TOPSIS) originated in the 1980s as a multi-criteria decision making method.
## How to install this package:
```bash
>> pip install -e .[dev]
```
## After installation, in Command Prompt/Terminal in pwd/current dir:
```
>> topsis <InputDataFile> <Weights> <Impacts> <ResultFileName>
```
Weights (`weights`) may not be normalised but will be normalised in the code.
**Note:** To avoid errors -
Input file must contain three or more columns.
2nd to last columns must contain numeric values only.
Number of weights, number of impacts and number of columns (from 2 nd to last columns) must
be same.
Impacts must be either +ve or -ve.
Impacts and weights must be separated by ‘,’ (comma).
## InputDataFile (data.csv) - an example
The decision matrix should be constructed with each row representing a Model alternative and each column representing a criterion like Correlation, R<sup>2</sup>, Root Mean Squared Error, Accuracy, etc.
Model | Corr | Rseq | RMSE | Accuracy
------------ | ------------- | ------------ | ------------- | ------------
M1 | 0.79 | 0.62 | 1.25 | 60.89
M2 | 0.66 | 0.44 | 2.89 | 63.07
M3 | 0.56 | 0.31 | 1.57 | 62.87
M4 | 0.82 | 0.67 | 2.68 | 70.19
M5 | 0.75 | 0.56 | 1.3 | 80.39
## Output file (result.csv) -
Based on the above input file and setting weights as "1,2,1,1" and impacts as "+,-,-,+".
Model | Corr | Rseq | RMSE | Accuracy | Topsis Score | Rank
------------ | ------------- | ------------ | ------------- | ------------ | ------------- | -------------
M1 | 0.79 | 0.62 | 1.25 | 60.89 | 0.423744391359611 | 4
M2 | 0.66 | 0.44 | 2.89 | 63.07 | 0.0.467426368298297 | 3
M3 | 0.56 | 0.31 | 1.57 | 62.87 | 0.760230957034903 | 1
M4 | 0.82 | 0.67 | 2.68 | 70.19 | 0.207772533881566 | 5
M5 | 0.75 | 0.56 | 1.3 | 80.39 | 0.504864457803718 | 2
The output file contains columns of input file along with two additional columns having Topsis Score and Rank.
Raw data
{
"_id": null,
"home_page": "",
"name": "102183051-topsis",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.5",
"maintainer_email": "",
"keywords": "python,video,stream,video stream,camera stream,sockets",
"author": "Sarthak Tiwari",
"author_email": "luckysarthak5@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/f5/18/cc528da0a6f65592ca99a401676d905447f65ac54f0f22da587a5912e49e/102183051-topsis-0.0.1.tar.gz",
"platform": null,
"description": "# TOPSIS\r\n\r\nSubmitted By: **Sarthak Tiwari | 102183051**\r\n\r\n***\r\n\r\n## What is TOPSIS?\r\n\r\n**T**echnique for **O**rder **P**reference by **S**imilarity to **I**deal **S**olution \r\n(TOPSIS) originated in the 1980s as a multi-criteria decision making method.\r\n\r\n## How to install this package:\r\n```bash\r\n>> pip install -e .[dev]\r\n```\r\n\r\n## After installation, in Command Prompt/Terminal in pwd/current dir:\r\n```\r\n>> topsis <InputDataFile> <Weights> <Impacts> <ResultFileName>\r\n```\r\n\r\nWeights (`weights`) may not be normalised but will be normalised in the code.\r\n**Note:** To avoid errors - \r\nInput file must contain three or more columns.\r\n2nd to last columns must contain numeric values only.\r\nNumber of weights, number of impacts and number of columns (from 2 nd to last columns) must\r\nbe same.\r\nImpacts must be either +ve or -ve.\r\nImpacts and weights must be separated by \u00e2\u20ac\u02dc,\u00e2\u20ac\u2122 (comma).\r\n\r\n## InputDataFile (data.csv) - an example\r\n\r\nThe decision matrix should be constructed with each row representing a Model alternative and each column representing a criterion like Correlation, R<sup>2</sup>, Root Mean Squared Error, Accuracy, etc. \r\n\r\nModel | Corr | Rseq | RMSE | Accuracy\r\n------------ | ------------- | ------------ | ------------- | ------------\r\nM1 |\t0.79 | 0.62\t| 1.25 | 60.89\r\nM2 | 0.66 | 0.44\t| 2.89 | 63.07\r\nM3 |\t0.56 | 0.31\t| 1.57 | 62.87\r\nM4 |\t0.82 | 0.67\t| 2.68 | 70.19\r\nM5 |\t0.75 | 0.56\t| 1.3 | 80.39\r\n\r\n## Output file (result.csv) - \r\nBased on the above input file and setting weights as \"1,2,1,1\" and impacts as \"+,-,-,+\".\r\n\r\nModel | Corr | Rseq | RMSE | Accuracy | Topsis Score | Rank\r\n------------ | ------------- | ------------ | ------------- | ------------ | ------------- | ------------- \r\nM1 |\t0.79 | 0.62\t| 1.25 | 60.89 | 0.423744391359611 | 4\r\nM2 | 0.66 | 0.44\t| 2.89 | 63.07 | 0.0.467426368298297 | 3\r\nM3 |\t0.56 | 0.31\t| 1.57 | 62.87 | 0.760230957034903 | 1\r\nM4 |\t0.82 | 0.67\t| 2.68 | 70.19 | 0.207772533881566 | 5\r\nM5 |\t0.75 | 0.56\t| 1.3\t | 80.39 | 0.504864457803718 | 2\r\n\r\nThe output file contains columns of input file along with two additional columns having Topsis Score and Rank.\r\n\r\n",
"bugtrack_url": null,
"license": "",
"summary": "A Topsis Package",
"version": "0.0.1",
"split_keywords": [
"python",
"video",
"stream",
"video stream",
"camera stream",
"sockets"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "cf177957001a3a78172fc3eb39e8f062359586887341efeb4aa0511eba872baa",
"md5": "a9735c532438a59c7722a5e132589055",
"sha256": "baac4f5f40a949a7fd59701eb344fc7f2b78eb53449c9a543a9d66f671eeece3"
},
"downloads": -1,
"filename": "102183051_topsis-0.0.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "a9735c532438a59c7722a5e132589055",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.5",
"size": 15053,
"upload_time": "2023-01-23T00:14:09",
"upload_time_iso_8601": "2023-01-23T00:14:09.545123Z",
"url": "https://files.pythonhosted.org/packages/cf/17/7957001a3a78172fc3eb39e8f062359586887341efeb4aa0511eba872baa/102183051_topsis-0.0.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "f518cc528da0a6f65592ca99a401676d905447f65ac54f0f22da587a5912e49e",
"md5": "010ae3f922bed782a67fe206db99f838",
"sha256": "91fe6005792b274ebe6c216e467c52a423ce3314ce6aae19d890ce58ca440ec2"
},
"downloads": -1,
"filename": "102183051-topsis-0.0.1.tar.gz",
"has_sig": false,
"md5_digest": "010ae3f922bed782a67fe206db99f838",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.5",
"size": 16157,
"upload_time": "2023-01-23T00:14:12",
"upload_time_iso_8601": "2023-01-23T00:14:12.059613Z",
"url": "https://files.pythonhosted.org/packages/f5/18/cc528da0a6f65592ca99a401676d905447f65ac54f0f22da587a5912e49e/102183051-topsis-0.0.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-01-23 00:14:12",
"github": false,
"gitlab": false,
"bitbucket": false,
"lcname": "102183051-topsis"
}