# Project Description
## TOPSIS PACKAGE Mitul Agarwal - 102217053
**Roll Number:** 102217053
**Subgroup:** 3Q23
The program takes a CSV file containing our data to be ranked, weights and impacts in the form of "+" or "-", separated by commas as inputs and then outputs a resultant CSV file with two additional columns of performance score and ranks.
---
## What is TOPSIS
TOPSIS, Technique of Order Preference Similarity to the Ideal Solution, is a multi-criteria decision analysis method (MCDA).
It chooses the alternative of the shortest Euclidean distance from the ideal solution and the greatest distance from the negative ideal solution.
---
## Installation
### How to install the TOPSIS package
Using pip install:
```bash
pip install 102217053-topsis
The output will then be saved in a newly created CSV file whose name will be provided in the command line by the user.
## Input File [input.csv]:
Topsis mathematical operations to be performed on the input file which contains a dataset having different fields.
## Weights ["1,1,1"]:
The weights assigned to the different parameters in the dataset should be passed in the argument, separated by commas.
## Impacts ["+,+,-"]:
The impacts are passed to consider which parameters have a positive impact on the decision and which ones have a negative impact. Only `+` and `-` values should be passed and should be separated with `,` only.
## Output File [output.csv]:
This argument is used to pass the path of the result file where we want the rank and performance score to be stored.
Raw data
{
"_id": null,
"home_page": "https://github.com/Mitul-Agarwal/102217053_topsis",
"name": "102217053-topsis",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": "topsis",
"author": "Mitul Agarwal",
"author_email": "mitulagarwal2003@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/50/2c/81b5f9d17259585354000533496e2c903b51fee7ff2d55fdd1d47893da35/102217053_topsis-1.0.4.tar.gz",
"platform": null,
"description": "# Project Description\r\n\r\n## TOPSIS PACKAGE Mitul Agarwal - 102217053\r\n\r\n**Roll Number:** 102217053 \r\n**Subgroup:** 3Q23\r\n\r\nThe program takes a CSV file containing our data to be ranked, weights and impacts in the form of \"+\" or \"-\", separated by commas as inputs and then outputs a resultant CSV file with two additional columns of performance score and ranks.\r\n\r\n---\r\n\r\n## What is TOPSIS\r\n\r\nTOPSIS, Technique of Order Preference Similarity to the Ideal Solution, is a multi-criteria decision analysis method (MCDA). \r\nIt chooses the alternative of the shortest Euclidean distance from the ideal solution and the greatest distance from the negative ideal solution.\r\n\r\n---\r\n\r\n## Installation\r\n\r\n### How to install the TOPSIS package\r\n\r\nUsing pip install:\r\n```bash\r\npip install 102217053-topsis\r\n\r\n\r\nThe output will then be saved in a newly created CSV file whose name will be provided in the command line by the user.\r\n\r\n## Input File [input.csv]:\r\nTopsis mathematical operations to be performed on the input file which contains a dataset having different fields.\r\n\r\n## Weights [\"1,1,1\"]:\r\nThe weights assigned to the different parameters in the dataset should be passed in the argument, separated by commas.\r\n\r\n## Impacts [\"+,+,-\"]:\r\nThe impacts are passed to consider which parameters have a positive impact on the decision and which ones have a negative impact. Only `+` and `-` values should be passed and should be separated with `,` only.\r\n\r\n## Output File [output.csv]:\r\nThis argument is used to pass the path of the result file where we want the rank and performance score to be stored.\r\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "This is a topsis package",
"version": "1.0.4",
"project_urls": {
"Download": "https://github.com/Mitul-Agarwal/102217053_topsis",
"Homepage": "https://github.com/Mitul-Agarwal/102217053_topsis"
},
"split_keywords": [
"topsis"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "449a0b7dc418ff914cc12d37f48ad5089f042187b96f1e66203e1e2adcb9357c",
"md5": "c33ba0f3b04323265045539add896fc5",
"sha256": "16fbd04c5ef74050e687be3469977b04da5258d4471ce46e6ece50c223279491"
},
"downloads": -1,
"filename": "102217053_topsis-1.0.4-py3-none-any.whl",
"has_sig": false,
"md5_digest": "c33ba0f3b04323265045539add896fc5",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 4309,
"upload_time": "2025-01-19T20:55:53",
"upload_time_iso_8601": "2025-01-19T20:55:53.816482Z",
"url": "https://files.pythonhosted.org/packages/44/9a/0b7dc418ff914cc12d37f48ad5089f042187b96f1e66203e1e2adcb9357c/102217053_topsis-1.0.4-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "502c81b5f9d17259585354000533496e2c903b51fee7ff2d55fdd1d47893da35",
"md5": "3baeceb83af69ab859ad6040f663727d",
"sha256": "8923eb2bccb7d138a9a3d4990185de608d40cc171b757ae1aa3ad533889a6171"
},
"downloads": -1,
"filename": "102217053_topsis-1.0.4.tar.gz",
"has_sig": false,
"md5_digest": "3baeceb83af69ab859ad6040f663727d",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 3669,
"upload_time": "2025-01-19T20:55:55",
"upload_time_iso_8601": "2025-01-19T20:55:55.455604Z",
"url": "https://files.pythonhosted.org/packages/50/2c/81b5f9d17259585354000533496e2c903b51fee7ff2d55fdd1d47893da35/102217053_topsis-1.0.4.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-01-19 20:55:55",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "Mitul-Agarwal",
"github_project": "102217053_topsis",
"travis_ci": false,
"coveralls": false,
"github_actions": false,
"lcname": "102217053-topsis"
}