# Topsis Python Package
**Developed by:** Aditya Pandey - 102217092
## Overview
The Topsis (Technique for Order of Preference by Similarity to Ideal Solution) method is a popular multi-criteria decision-making technique. It helps to evaluate and select the best alternative from a set of options based on their proximity to the ideal solution. This Python package implements the Topsis method, making it easy to apply the technique on datasets with multiple criteria.
## Features
- Computes Topsis scores based on input data, weights, and impacts.
- Ranks alternatives according to the Topsis methodology.
- Supports data input through Excel files.
- Provides an easy-to-use command-line interface for seamless integration.
## Installation
To install the Topsis Python package, use `pip` with the following command:
```bash
pip install 102217092-Aditya-Pandey
```
## Usage
### Command-Line Input
To use the Topsis package from the command line, run the following command:
```sh
python <program.py> <InputDataFile> <Weights> <Impacts> <ResultFileName>
```
- **Input File Type**: The input file must be an Excel file.
- **Data Format**: The second to last columns of the data file MUST contain numeric values.
- **Impacts**: Impacts should be either '+' (positive) or '-' (negative).
- **Weights and Impacts**: Weights and impacts should be enclosed in double quotes and separated by commas.
- **Output**: The output will include a 'Topsis Score' column and a 'Rank' column added to the data. The results will be saved to a CSV file specified in the command-line arguments.
## Example
### Command-Line Input Example
```sh
python 102217092.py 102217092-data.csv "1,1,1,1,1" "+,+,-,+,-" 102217092-result.csv
```
Raw data
{
"_id": null,
"home_page": null,
"name": "102217092-Aditya",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.6",
"maintainer_email": null,
"keywords": "python, topsis, decision-making",
"author": "Aditya Pandey",
"author_email": "asadityasonu@gmail.com",
"download_url": "https://files.pythonhosted.org/packages/c2/a8/9636b6c3d767a78c24ad9ab1240ace670fd1d2ddf58a83ab9aeef46bfb58/102217092-Aditya-0.1.1.tar.gz",
"platform": null,
"description": "# Topsis Python Package\n\n**Developed by:** Aditya Pandey - 102217092\n\n## Overview\n\nThe Topsis (Technique for Order of Preference by Similarity to Ideal Solution) method is a popular multi-criteria decision-making technique. It helps to evaluate and select the best alternative from a set of options based on their proximity to the ideal solution. This Python package implements the Topsis method, making it easy to apply the technique on datasets with multiple criteria.\n\n## Features\n- Computes Topsis scores based on input data, weights, and impacts.\n- Ranks alternatives according to the Topsis methodology.\n- Supports data input through Excel files.\n- Provides an easy-to-use command-line interface for seamless integration.\n\n## Installation\n\nTo install the Topsis Python package, use `pip` with the following command:\n\n```bash\npip install 102217092-Aditya-Pandey\n ```\n\n## Usage\n\n### Command-Line Input\n\nTo use the Topsis package from the command line, run the following command:\n\n```sh\npython <program.py> <InputDataFile> <Weights> <Impacts> <ResultFileName>\n```\n\n- **Input File Type**: The input file must be an Excel file.\n- **Data Format**: The second to last columns of the data file MUST contain numeric values.\n- **Impacts**: Impacts should be either '+' (positive) or '-' (negative).\n- **Weights and Impacts**: Weights and impacts should be enclosed in double quotes and separated by commas.\n- **Output**: The output will include a 'Topsis Score' column and a 'Rank' column added to the data. The results will be saved to a CSV file specified in the command-line arguments.\n\n## Example\n\n### Command-Line Input Example\n\n```sh\npython 102217092.py 102217092-data.csv \"1,1,1,1,1\" \"+,+,-,+,-\" 102217092-result.csv\n```\n\n\n\n\n\n",
"bugtrack_url": null,
"license": null,
"summary": "Topsis Package by Aditya Pandey",
"version": "0.1.1",
"project_urls": null,
"split_keywords": [
"python",
" topsis",
" decision-making"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "b7b537556672a242d797546a1a5bc2f727fe2d1f4dbea17a6ef08b5ff9fa2da0",
"md5": "110a816c953790d804c65f3309ea1a98",
"sha256": "9de74eb1bb01a06a2545d75a152d317ada8845112bdf8b541675a55d274a5d86"
},
"downloads": -1,
"filename": "102217092_Aditya-0.1.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "110a816c953790d804c65f3309ea1a98",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.6",
"size": 3432,
"upload_time": "2025-01-19T22:45:28",
"upload_time_iso_8601": "2025-01-19T22:45:28.261551Z",
"url": "https://files.pythonhosted.org/packages/b7/b5/37556672a242d797546a1a5bc2f727fe2d1f4dbea17a6ef08b5ff9fa2da0/102217092_Aditya-0.1.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "c2a89636b6c3d767a78c24ad9ab1240ace670fd1d2ddf58a83ab9aeef46bfb58",
"md5": "77c8685a9bdc252050571b9cd3021608",
"sha256": "e073f0ef476755e39835ca8a8685510c8e7ffe6f8f0a89fdfb0a4efae227aea5"
},
"downloads": -1,
"filename": "102217092-Aditya-0.1.1.tar.gz",
"has_sig": false,
"md5_digest": "77c8685a9bdc252050571b9cd3021608",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.6",
"size": 3247,
"upload_time": "2025-01-19T22:45:30",
"upload_time_iso_8601": "2025-01-19T22:45:30.425446Z",
"url": "https://files.pythonhosted.org/packages/c2/a8/9636b6c3d767a78c24ad9ab1240ace670fd1d2ddf58a83ab9aeef46bfb58/102217092-Aditya-0.1.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-01-19 22:45:30",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "102217092-aditya"
}