102217092-Aditya


Name102217092-Aditya JSON
Version 0.1.1 PyPI version JSON
download
home_pageNone
SummaryTopsis Package by Aditya Pandey
upload_time2025-01-19 22:45:30
maintainerNone
docs_urlNone
authorAditya Pandey
requires_python>=3.6
licenseNone
keywords python topsis decision-making
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Topsis Python Package

**Developed by:** Aditya Pandey - 102217092

## Overview

The Topsis (Technique for Order of Preference by Similarity to Ideal Solution) method is a popular multi-criteria decision-making technique. It helps to evaluate and select the best alternative from a set of options based on their proximity to the ideal solution. This Python package implements the Topsis method, making it easy to apply the technique on datasets with multiple criteria.

## Features
- Computes Topsis scores based on input data, weights, and impacts.
- Ranks alternatives according to the Topsis methodology.
- Supports data input through Excel files.
- Provides an easy-to-use command-line interface for seamless integration.

## Installation

To install the Topsis Python package, use `pip` with the following command:

```bash
pip install 102217092-Aditya-Pandey
 ```

## Usage

### Command-Line Input

To use the Topsis package from the command line, run the following command:

```sh
python <program.py> <InputDataFile> <Weights> <Impacts> <ResultFileName>
```

- **Input File Type**: The input file must be an Excel file.
- **Data Format**: The second to last columns of the data file MUST contain numeric values.
- **Impacts**: Impacts should be either '+' (positive) or '-' (negative).
- **Weights and Impacts**: Weights and impacts should be enclosed in double quotes and separated by commas.
- **Output**: The output will include a 'Topsis Score' column and a 'Rank' column added to the data. The results will be saved to a CSV file specified in the command-line arguments.

## Example

### Command-Line Input Example

```sh
python 102217092.py 102217092-data.csv "1,1,1,1,1" "+,+,-,+,-" 102217092-result.csv
```






            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "102217092-Aditya",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": null,
    "keywords": "python, topsis, decision-making",
    "author": "Aditya Pandey",
    "author_email": "asadityasonu@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/c2/a8/9636b6c3d767a78c24ad9ab1240ace670fd1d2ddf58a83ab9aeef46bfb58/102217092-Aditya-0.1.1.tar.gz",
    "platform": null,
    "description": "# Topsis Python Package\n\n**Developed by:** Aditya Pandey - 102217092\n\n## Overview\n\nThe Topsis (Technique for Order of Preference by Similarity to Ideal Solution) method is a popular multi-criteria decision-making technique. It helps to evaluate and select the best alternative from a set of options based on their proximity to the ideal solution. This Python package implements the Topsis method, making it easy to apply the technique on datasets with multiple criteria.\n\n## Features\n- Computes Topsis scores based on input data, weights, and impacts.\n- Ranks alternatives according to the Topsis methodology.\n- Supports data input through Excel files.\n- Provides an easy-to-use command-line interface for seamless integration.\n\n## Installation\n\nTo install the Topsis Python package, use `pip` with the following command:\n\n```bash\npip install 102217092-Aditya-Pandey\n ```\n\n## Usage\n\n### Command-Line Input\n\nTo use the Topsis package from the command line, run the following command:\n\n```sh\npython <program.py> <InputDataFile> <Weights> <Impacts> <ResultFileName>\n```\n\n- **Input File Type**: The input file must be an Excel file.\n- **Data Format**: The second to last columns of the data file MUST contain numeric values.\n- **Impacts**: Impacts should be either '+' (positive) or '-' (negative).\n- **Weights and Impacts**: Weights and impacts should be enclosed in double quotes and separated by commas.\n- **Output**: The output will include a 'Topsis Score' column and a 'Rank' column added to the data. The results will be saved to a CSV file specified in the command-line arguments.\n\n## Example\n\n### Command-Line Input Example\n\n```sh\npython 102217092.py 102217092-data.csv \"1,1,1,1,1\" \"+,+,-,+,-\" 102217092-result.csv\n```\n\n\n\n\n\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Topsis Package by Aditya Pandey",
    "version": "0.1.1",
    "project_urls": null,
    "split_keywords": [
        "python",
        " topsis",
        " decision-making"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "b7b537556672a242d797546a1a5bc2f727fe2d1f4dbea17a6ef08b5ff9fa2da0",
                "md5": "110a816c953790d804c65f3309ea1a98",
                "sha256": "9de74eb1bb01a06a2545d75a152d317ada8845112bdf8b541675a55d274a5d86"
            },
            "downloads": -1,
            "filename": "102217092_Aditya-0.1.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "110a816c953790d804c65f3309ea1a98",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.6",
            "size": 3432,
            "upload_time": "2025-01-19T22:45:28",
            "upload_time_iso_8601": "2025-01-19T22:45:28.261551Z",
            "url": "https://files.pythonhosted.org/packages/b7/b5/37556672a242d797546a1a5bc2f727fe2d1f4dbea17a6ef08b5ff9fa2da0/102217092_Aditya-0.1.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "c2a89636b6c3d767a78c24ad9ab1240ace670fd1d2ddf58a83ab9aeef46bfb58",
                "md5": "77c8685a9bdc252050571b9cd3021608",
                "sha256": "e073f0ef476755e39835ca8a8685510c8e7ffe6f8f0a89fdfb0a4efae227aea5"
            },
            "downloads": -1,
            "filename": "102217092-Aditya-0.1.1.tar.gz",
            "has_sig": false,
            "md5_digest": "77c8685a9bdc252050571b9cd3021608",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 3247,
            "upload_time": "2025-01-19T22:45:30",
            "upload_time_iso_8601": "2025-01-19T22:45:30.425446Z",
            "url": "https://files.pythonhosted.org/packages/c2/a8/9636b6c3d767a78c24ad9ab1240ace670fd1d2ddf58a83ab9aeef46bfb58/102217092-Aditya-0.1.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-01-19 22:45:30",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "102217092-aditya"
}
        
Elapsed time: 2.41340s