A-FMM


NameA-FMM JSON
Version 0.1.2 PyPI version JSON
download
home_page
SummaryPython implementation of the Aperiodic-Fourier Modal Method for electromagnetic simulation
upload_time2024-02-27 21:56:43
maintainer
docs_urlNone
author
requires_python>=3.10
licenseMIT
keywords fourier modal methods photonics scattering matrix simulation
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            [![Documentation Status](https://readthedocs.org/projects/a-fmm/badge/?version=latest)](https://a-fmm.readthedocs.io/en/latest/?badge=latest)
[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)
[![MIT](https://img.shields.io/github/license/gdsfactory/gdsfactory)](https://choosealicense.com/licenses/mit/)

# A-FMM

This is a Python implementation the Aperiodic-Fourier Modal Method, a fully vectorial method for solving Maxwell equations that combines a Fourier-based mode solver and a scattering matrix recursion algorithm to model full 3D structures. This approach is well suited to calculate modes, transmission, reflection, scattering and absorption of multi-layered structures. Moreover, support for Bloch modes of periodic structures allows for the simulation of photonic crystals or waveguide Bragg gratings.

## Installation
You can install A_FMM directly from pypi by running:

    pip install A_FMM


## Documentation
Full documentation is available on [Read the Docs](https://a-fmm.readthedocs.io)


            

Raw data

            {
    "_id": null,
    "home_page": "",
    "name": "A-FMM",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": "",
    "keywords": "fourier modal methods,photonics,scattering matrix,simulation",
    "author": "",
    "author_email": "Marco Passoni <mpasson91@gmail.com>",
    "download_url": "https://files.pythonhosted.org/packages/a1/0d/f257c14d55cd21f923ea5fec9985bc53bb73badf87b0d4bb7b030d739f29/a_fmm-0.1.2.tar.gz",
    "platform": null,
    "description": "[![Documentation Status](https://readthedocs.org/projects/a-fmm/badge/?version=latest)](https://a-fmm.readthedocs.io/en/latest/?badge=latest)\n[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)\n[![MIT](https://img.shields.io/github/license/gdsfactory/gdsfactory)](https://choosealicense.com/licenses/mit/)\n\n# A-FMM\n\nThis is a Python implementation the Aperiodic-Fourier Modal Method, a fully vectorial method for solving Maxwell equations that combines a Fourier-based mode solver and a scattering matrix recursion algorithm to model full 3D structures. This approach is well suited to calculate modes, transmission, reflection, scattering and absorption of multi-layered structures. Moreover, support for Bloch modes of periodic structures allows for the simulation of photonic crystals or waveguide Bragg gratings.\n\n## Installation\nYou can install A_FMM directly from pypi by running:\n\n    pip install A_FMM\n\n\n## Documentation\nFull documentation is available on [Read the Docs](https://a-fmm.readthedocs.io)\n\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Python implementation of the Aperiodic-Fourier Modal Method for electromagnetic simulation",
    "version": "0.1.2",
    "project_urls": null,
    "split_keywords": [
        "fourier modal methods",
        "photonics",
        "scattering matrix",
        "simulation"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "cfb83e49e9531a32af015dc1eba438162339179508877b5735ba302125bfc784",
                "md5": "1330a5340b01c8bc74bcb0affade4c42",
                "sha256": "18d1a53e34fd24ebdd277d18e121b173b31a037ea3e0b316447e6e939d3089ec"
            },
            "downloads": -1,
            "filename": "a_fmm-0.1.2-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "1330a5340b01c8bc74bcb0affade4c42",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.10",
            "size": 25586,
            "upload_time": "2024-02-27T21:56:41",
            "upload_time_iso_8601": "2024-02-27T21:56:41.836456Z",
            "url": "https://files.pythonhosted.org/packages/cf/b8/3e49e9531a32af015dc1eba438162339179508877b5735ba302125bfc784/a_fmm-0.1.2-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "a10df257c14d55cd21f923ea5fec9985bc53bb73badf87b0d4bb7b030d739f29",
                "md5": "79897825e78c30e9960d4528efc4758c",
                "sha256": "34b94988b1d278b88dbbf31851d4608de4caff6dba578aee1be67aa364b5e876"
            },
            "downloads": -1,
            "filename": "a_fmm-0.1.2.tar.gz",
            "has_sig": false,
            "md5_digest": "79897825e78c30e9960d4528efc4758c",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10",
            "size": 22866,
            "upload_time": "2024-02-27T21:56:43",
            "upload_time_iso_8601": "2024-02-27T21:56:43.326206Z",
            "url": "https://files.pythonhosted.org/packages/a1/0d/f257c14d55cd21f923ea5fec9985bc53bb73badf87b0d4bb7b030d739f29/a_fmm-0.1.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-02-27 21:56:43",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "a-fmm"
}
        
Elapsed time: 0.18358s