Name | A-FMM JSON |
Version |
0.1.2
JSON |
| download |
home_page | |
Summary | Python implementation of the Aperiodic-Fourier Modal Method for electromagnetic simulation |
upload_time | 2024-02-27 21:56:43 |
maintainer | |
docs_url | None |
author | |
requires_python | >=3.10 |
license | MIT |
keywords |
fourier modal methods
photonics
scattering matrix
simulation
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
[![Documentation Status](https://readthedocs.org/projects/a-fmm/badge/?version=latest)](https://a-fmm.readthedocs.io/en/latest/?badge=latest)
[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)
[![MIT](https://img.shields.io/github/license/gdsfactory/gdsfactory)](https://choosealicense.com/licenses/mit/)
# A-FMM
This is a Python implementation the Aperiodic-Fourier Modal Method, a fully vectorial method for solving Maxwell equations that combines a Fourier-based mode solver and a scattering matrix recursion algorithm to model full 3D structures. This approach is well suited to calculate modes, transmission, reflection, scattering and absorption of multi-layered structures. Moreover, support for Bloch modes of periodic structures allows for the simulation of photonic crystals or waveguide Bragg gratings.
## Installation
You can install A_FMM directly from pypi by running:
pip install A_FMM
## Documentation
Full documentation is available on [Read the Docs](https://a-fmm.readthedocs.io)
Raw data
{
"_id": null,
"home_page": "",
"name": "A-FMM",
"maintainer": "",
"docs_url": null,
"requires_python": ">=3.10",
"maintainer_email": "",
"keywords": "fourier modal methods,photonics,scattering matrix,simulation",
"author": "",
"author_email": "Marco Passoni <mpasson91@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/a1/0d/f257c14d55cd21f923ea5fec9985bc53bb73badf87b0d4bb7b030d739f29/a_fmm-0.1.2.tar.gz",
"platform": null,
"description": "[![Documentation Status](https://readthedocs.org/projects/a-fmm/badge/?version=latest)](https://a-fmm.readthedocs.io/en/latest/?badge=latest)\n[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)\n[![MIT](https://img.shields.io/github/license/gdsfactory/gdsfactory)](https://choosealicense.com/licenses/mit/)\n\n# A-FMM\n\nThis is a Python implementation the Aperiodic-Fourier Modal Method, a fully vectorial method for solving Maxwell equations that combines a Fourier-based mode solver and a scattering matrix recursion algorithm to model full 3D structures. This approach is well suited to calculate modes, transmission, reflection, scattering and absorption of multi-layered structures. Moreover, support for Bloch modes of periodic structures allows for the simulation of photonic crystals or waveguide Bragg gratings.\n\n## Installation\nYou can install A_FMM directly from pypi by running:\n\n pip install A_FMM\n\n\n## Documentation\nFull documentation is available on [Read the Docs](https://a-fmm.readthedocs.io)\n\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Python implementation of the Aperiodic-Fourier Modal Method for electromagnetic simulation",
"version": "0.1.2",
"project_urls": null,
"split_keywords": [
"fourier modal methods",
"photonics",
"scattering matrix",
"simulation"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "cfb83e49e9531a32af015dc1eba438162339179508877b5735ba302125bfc784",
"md5": "1330a5340b01c8bc74bcb0affade4c42",
"sha256": "18d1a53e34fd24ebdd277d18e121b173b31a037ea3e0b316447e6e939d3089ec"
},
"downloads": -1,
"filename": "a_fmm-0.1.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "1330a5340b01c8bc74bcb0affade4c42",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.10",
"size": 25586,
"upload_time": "2024-02-27T21:56:41",
"upload_time_iso_8601": "2024-02-27T21:56:41.836456Z",
"url": "https://files.pythonhosted.org/packages/cf/b8/3e49e9531a32af015dc1eba438162339179508877b5735ba302125bfc784/a_fmm-0.1.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "a10df257c14d55cd21f923ea5fec9985bc53bb73badf87b0d4bb7b030d739f29",
"md5": "79897825e78c30e9960d4528efc4758c",
"sha256": "34b94988b1d278b88dbbf31851d4608de4caff6dba578aee1be67aa364b5e876"
},
"downloads": -1,
"filename": "a_fmm-0.1.2.tar.gz",
"has_sig": false,
"md5_digest": "79897825e78c30e9960d4528efc4758c",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.10",
"size": 22866,
"upload_time": "2024-02-27T21:56:43",
"upload_time_iso_8601": "2024-02-27T21:56:43.326206Z",
"url": "https://files.pythonhosted.org/packages/a1/0d/f257c14d55cd21f923ea5fec9985bc53bb73badf87b0d4bb7b030d739f29/a_fmm-0.1.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-02-27 21:56:43",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "a-fmm"
}