ASCA


NameASCA JSON
Version 1.1 PyPI version JSON
download
home_pageNone
SummaryASCA: ANOVA-simultaneous component analysis
upload_time2024-05-15 16:21:18
maintainerNone
docs_urlNone
authorSin Yong Teng
requires_pythonNone
licenseBSD 2-Clause
keywords design of experiments chemometrics artificial intelligence
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # ASCA: ANOVA-Simultaneous Component Analysis in Python


<!-- TABLE OF CONTENTS -->
## Table of Contents

* [About the Project](#about-the-project)
* [Getting Started](#getting-started)
* [Simple Examples](#simple-examples)
* [Contributing](#contributing)
* [License](#license)
* [Contact](#contact)
* [References](#references)


<!-- ABOUT THE PROJECT -->
## About The Project
ASCA is a multivariate approach to the standard ANOVA, using simultaneous component analysis to interprete the underlying factors and interaction from a design of experiment dataset. This project implements ASCA in python to support open source development and a wider application of ASCA.


<!-- GETTING STARTED -->
## Getting Started

Install this library either from the official pypi or from this Github repository:
```
pip install ASCA
```

## Install most updated version from Github

In a environment terminal or CMD:
```bat
pip install git+https://github.com/tsyet12/ASCA
```




### Simple Example
```python

    X = [[1.0000,0.6000], 
    [3.0000,0.4000],
    [2.0000,0.7000],
    [1.0000,0.8000],
    [2.0000,0.0100],
    [2.0000,0.8000],
    [4.0000,1.0000],
    [6.0000,2.0000],
    [5.0000,0.9000],
    [5.0000,1.0000],
    [6.0000,2.0000],
    [5.0000,0.7000]]
    X=np.asarray(X)

    F = [[1,     1],
     [1,     1],
     [1,     2],
     [1,     2],
     [1,     3],
     [1,     3],
     [2,     1],
     [2,     1],
     [2,     2],
     [2,     2],
     [2,     3],
     [2,     3]]
    F=np.asarray(F)
    interactions = [[0, 1]]

    ASCA=ASCA()
    ASCA.fit(X,F,interactions)
    ASCA.plot_factors()
    ASCA.plot_interactions()

```


![Figure_1](https://user-images.githubusercontent.com/19692103/205870275-df745bee-125d-4fa4-8e2a-00fa96ce9e2c.png)
![Figure_2](https://user-images.githubusercontent.com/19692103/205870291-960146ac-02f6-4852-b3d5-71c666550259.png)
![Figure_3](https://user-images.githubusercontent.com/19692103/205872428-245e778e-c805-4dfc-b5d4-0af7c890c9f2.png)


<!-- CONTRIBUTING -->
## Contributing

Contributions are what make the open source community such an amazing place to be learn, inspire, and create. Any contributions you make are **greatly appreciated**.

1. Fork the Project
2. Create your Feature Branch (`git checkout -b testbranch/prep`)
3. Commit your Changes (`git commit -m 'Improve testbranch/prep'`)
4. Push to the Branch (`git push origin testbranch/prep`)
5. Open a Pull Request


<!-- LICENSE -->
## License

Distributed under the Open Sourced BSD-2-Clause License. See [`LICENSE`](https://github.com/tsyet12/Chemsy/blob/main/LICENSE) for more information.


<!-- CONTACT -->
## Contact
Main Developer:

Sin Yong Teng sinyong.teng@ru.nl or tsyet12@gmail.com
Radboud University Nijmegen

<!-- References -->
## References
Smilde, Age K., et al. "ANOVA-simultaneous component analysis (ASCA): a new tool for analyzing designed metabolomics data." Bioinformatics 21.13 (2005): 3043-3048.

Jansen, Jeroen J., et al. "ASCA: analysis of multivariate data obtained from an experimental design." Journal of Chemometrics: A Journal of the Chemometrics Society 19.9 (2005): 469-481.


## Acknowledgements
The research contribution from S.Y. Teng is supported by the European Union's Horizon Europe Research and Innovation Program, under Marie Skłodowska-Curie Actions grant agreement no. 101064585 (MoCEGS).

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "ASCA",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "Design of Experiments, Chemometrics, Artificial Intelligence",
    "author": "Sin Yong Teng",
    "author_email": "tsyet12@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/86/3d/7098457b6d12adffb85d06ddee7b989453001b18aaa643dca46a5464b161/ASCA-1.1.tar.gz",
    "platform": null,
    "description": "# ASCA: ANOVA-Simultaneous Component Analysis in Python\r\n\r\n\r\n<!-- TABLE OF CONTENTS -->\r\n## Table of Contents\r\n\r\n* [About the Project](#about-the-project)\r\n* [Getting Started](#getting-started)\r\n* [Simple Examples](#simple-examples)\r\n* [Contributing](#contributing)\r\n* [License](#license)\r\n* [Contact](#contact)\r\n* [References](#references)\r\n\r\n\r\n<!-- ABOUT THE PROJECT -->\r\n## About The Project\r\nASCA is a multivariate approach to the standard ANOVA, using simultaneous component analysis to interprete the underlying factors and interaction from a design of experiment dataset. This project implements ASCA in python to support open source development and a wider application of ASCA.\r\n\r\n\r\n<!-- GETTING STARTED -->\r\n## Getting Started\r\n\r\nInstall this library either from the official pypi or from this Github repository:\r\n```\r\npip install ASCA\r\n```\r\n\r\n## Install most updated version from Github\r\n\r\nIn a environment terminal or CMD:\r\n```bat\r\npip install git+https://github.com/tsyet12/ASCA\r\n```\r\n\r\n\r\n\r\n\r\n### Simple Example\r\n```python\r\n\r\n    X = [[1.0000,0.6000], \r\n    [3.0000,0.4000],\r\n    [2.0000,0.7000],\r\n    [1.0000,0.8000],\r\n    [2.0000,0.0100],\r\n    [2.0000,0.8000],\r\n    [4.0000,1.0000],\r\n    [6.0000,2.0000],\r\n    [5.0000,0.9000],\r\n    [5.0000,1.0000],\r\n    [6.0000,2.0000],\r\n    [5.0000,0.7000]]\r\n    X=np.asarray(X)\r\n\r\n    F = [[1,     1],\r\n     [1,     1],\r\n     [1,     2],\r\n     [1,     2],\r\n     [1,     3],\r\n     [1,     3],\r\n     [2,     1],\r\n     [2,     1],\r\n     [2,     2],\r\n     [2,     2],\r\n     [2,     3],\r\n     [2,     3]]\r\n    F=np.asarray(F)\r\n    interactions = [[0, 1]]\r\n\r\n    ASCA=ASCA()\r\n    ASCA.fit(X,F,interactions)\r\n    ASCA.plot_factors()\r\n    ASCA.plot_interactions()\r\n\r\n```\r\n\r\n\r\n![Figure_1](https://user-images.githubusercontent.com/19692103/205870275-df745bee-125d-4fa4-8e2a-00fa96ce9e2c.png)\r\n![Figure_2](https://user-images.githubusercontent.com/19692103/205870291-960146ac-02f6-4852-b3d5-71c666550259.png)\r\n![Figure_3](https://user-images.githubusercontent.com/19692103/205872428-245e778e-c805-4dfc-b5d4-0af7c890c9f2.png)\r\n\r\n\r\n<!-- CONTRIBUTING -->\r\n## Contributing\r\n\r\nContributions are what make the open source community such an amazing place to be learn, inspire, and create. Any contributions you make are **greatly appreciated**.\r\n\r\n1. Fork the Project\r\n2. Create your Feature Branch (`git checkout -b testbranch/prep`)\r\n3. Commit your Changes (`git commit -m 'Improve testbranch/prep'`)\r\n4. Push to the Branch (`git push origin testbranch/prep`)\r\n5. Open a Pull Request\r\n\r\n\r\n<!-- LICENSE -->\r\n## License\r\n\r\nDistributed under the Open Sourced BSD-2-Clause License. See [`LICENSE`](https://github.com/tsyet12/Chemsy/blob/main/LICENSE) for more information.\r\n\r\n\r\n<!-- CONTACT -->\r\n## Contact\r\nMain Developer:\r\n\r\nSin Yong Teng sinyong.teng@ru.nl or tsyet12@gmail.com\r\nRadboud University Nijmegen\r\n\r\n<!-- References -->\r\n## References\r\nSmilde, Age K., et al. \"ANOVA-simultaneous component analysis (ASCA): a new tool for analyzing designed metabolomics data.\" Bioinformatics 21.13 (2005): 3043-3048.\r\n\r\nJansen, Jeroen J., et al. \"ASCA: analysis of multivariate data obtained from an experimental design.\" Journal of Chemometrics: A Journal of the Chemometrics Society 19.9 (2005): 469-481.\r\n\r\n\r\n## Acknowledgements\r\nThe research contribution from S.Y. Teng is supported by the European Union's Horizon Europe Research and Innovation Program, under Marie Sk\u0142odowska-Curie Actions grant agreement no. 101064585 (MoCEGS).\r\n",
    "bugtrack_url": null,
    "license": "BSD 2-Clause",
    "summary": "ASCA: ANOVA-simultaneous component analysis",
    "version": "1.1",
    "project_urls": null,
    "split_keywords": [
        "design of experiments",
        " chemometrics",
        " artificial intelligence"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "863d7098457b6d12adffb85d06ddee7b989453001b18aaa643dca46a5464b161",
                "md5": "6a8a348adad269e1585b4792d8ba83b6",
                "sha256": "bc24ac28760a4993445df7466e4c0bd737b3e4d8ee25b21182e8a0a75a517b6f"
            },
            "downloads": -1,
            "filename": "ASCA-1.1.tar.gz",
            "has_sig": false,
            "md5_digest": "6a8a348adad269e1585b4792d8ba83b6",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 80959,
            "upload_time": "2024-05-15T16:21:18",
            "upload_time_iso_8601": "2024-05-15T16:21:18.610531Z",
            "url": "https://files.pythonhosted.org/packages/86/3d/7098457b6d12adffb85d06ddee7b989453001b18aaa643dca46a5464b161/ASCA-1.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-05-15 16:21:18",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "asca"
}
        
Elapsed time: 7.17160s