# Project Title
Simplifying Regression and Classification Modeling
## Guide
### Installation setup
`pip install AlgoMaster`
### Classfication model
1. Initialize the model
`Classifier=AlgoMaster.Classifier(X,Y,test_size=0.2,random_state=20)`
2. Train the model and predict the results in table format
`Classifier.model_training()`
3. Ensemble technique
`Classifier.ensemble_prediction(No. of models)`
4. Single Training
To predict unseen data
`data=[1,2,3,4,5,6,7,8,9]
Classifier.logistic_test(data)
Classifier.KNeighbors_test(data)
Classifier.GaussianNB_test(data)
Classifier.Bagging_test(data)
Classifier.ExtraTrees_test(data)
Classifier.RandomForest_test(data)
Classifier.DecisionTree_test(data)
Classifier.AdaBoost_test(data)
Classifier.GradientBoosting_test(data)
Classifier.XGBoost_test(data)
Classifier.SGD_test(data)
Classifier.SVC_test(data)
Classifier.Ridge_test(data)
Classifier.BernoulliNB_test(data)`
5. Hyperparameter Turning
To find the best parameters for the model
`Classifier.hyperparameter_tuning()`
6. Single Hyperparameter Turning
To find the best parameters for the model
`Classifier.logistic_hyperparameter()
Classifier.KNeighbors_hyperparameter()
Classifier.GaussianNB_hyperparameter()
Classifier.Bagging_hyperparameter()
Classifier.ExtraTrees_hyperparameter()
Classifier.RandomForest_hyperparameter()
Classifier.DecisionTree_hyperparameter()
Classifier.AdaBoost_hyperparameter()
Classifier.GradientBoosting_hyperparameter()
Classifier.XGBoost_hyperparameter()
Classifier.SGD_hyperparameter()
Classifier.SVC_hyperparameter()
Classifier.Ridge_hyperparameter()
Classifier.BernoulliNB_hyperparameter()`
### Regression model
1. Initialize the model
`Regressor=AlgoMaster.Regressor(X,Y,test_size=0.2,random_state=20)`
2. Train the model and predict the results in table format
`Regressor.model_training()`
3. Ensemble technique
`Regressor.ensemble_prediction(No. of models)`
4. Single Training
`data=[1,2,3,4,5,6,7,8,9]
Regressor.LinearRegression_test(data)
Regressor.KNeighbors_test(data)
Regressor.Bagging_test(data)
Regressor.ExtraTrees_test(data)
Regressor.RandomForest_test(data)
Regressor.DecisionTree_test(data)
Regressor.AdaBoost_test(data)
Regressor.GradientBoosting_test(data)
Regressor.XGBoost_test(data)
Regressor.TheilSen_test(data)
Regressor.SVR_test(data)
Regressor.Ridge_test(data)
Regressor.RANSAC_test(data)
Regressor.ARD_test(data)
Regressor.BayesianRidge_test(data)
Regressor.HuberRegressor_test(data)
Regressor.Lasso_test(data)
Regressor.ElasticNet_test(data)`
5. Hyperparameter Turning
To find the best parameters for the model
`Regressor.hyperparameter_tuning()`
6. Single Hyperparameter Turning
To find the best parameters for the model
`Regressor.KNeighbors_hyperparameter()
Regressor.Bagging_hyperparameter()
Regressor.ExtraTrees_hyperparameter()
Regressor.RandomForest_hyperparameter()
Regressor.DecisionTree_hyperparameter()
Regressor.AdaBoost_hyperparameter()
Regressor.GradientBoosting_hyperparameter()
Regressor.XGBoost_hyperparameter()
Regressor.TheilSen_hyperparameter()
<!-- Regressor.SVR_hyperparameter() -->
Regressor.Ridge_hyperparameter()
Regressor.RANSAC_hyperparameter()
Regressor.ARD_hyperparameter()
Regressor.BayesianRidge_hyperparameter()
Regressor.Lasso_hyperparameter()
Regressor.ElasticNet_hyperparameter()`
Raw data
{
"_id": null,
"home_page": "",
"name": "AlgoMaster",
"maintainer": "",
"docs_url": null,
"requires_python": "",
"maintainer_email": "",
"keywords": "machine learning,classifiers,logistic regression,k-nearest neighbors,naive Bayes,random forests,support vector machines,ensemble methods,hyperparameter tuning,performance evaluation,comparison,multiple classifiersadvantages,Regression class,regression analysis, Python,model training,evaluation,hyperparameter tuning,encapsulating,regression algorithms,metrics,simplifies,building,comparing,regression models,accurate predictions,insights",
"author": "sajo sam",
"author_email": "<sajosamambalakara@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/ee/a2/e2305aab25e237d57cd426e8cb6e5dfb24d760bcafa12bd7e546adc50153/AlgoMaster-0.1.2.tar.gz",
"platform": null,
"description": "\r\n# Project Title\r\n\r\n\r\n\r\nSimplifying Regression and Classification Modeling\r\n\r\n\r\n\r\n## Guide\r\n\r\n\r\n\r\n### Installation setup\r\n\r\n\r\n\r\n`pip install AlgoMaster`\r\n\r\n\r\n\r\n### Classfication model\r\n\r\n\r\n\r\n1. Initialize the model\r\n\r\n\r\n\r\n `Classifier=AlgoMaster.Classifier(X,Y,test_size=0.2,random_state=20)`\r\n\r\n\r\n\r\n2. Train the model and predict the results in table format\r\n\r\n\r\n\r\n `Classifier.model_training()`\r\n\r\n\r\n\r\n3. Ensemble technique\r\n\r\n\r\n\r\n `Classifier.ensemble_prediction(No. of models)`\r\n\r\n\r\n\r\n4. Single Training\r\n\r\n To predict unseen data\r\n\r\n\r\n\r\n `data=[1,2,3,4,5,6,7,8,9]\r\n\r\n Classifier.logistic_test(data)\r\n\r\n Classifier.KNeighbors_test(data)\r\n\r\n Classifier.GaussianNB_test(data)\r\n\r\n Classifier.Bagging_test(data)\r\n\r\n Classifier.ExtraTrees_test(data)\r\n\r\n Classifier.RandomForest_test(data)\r\n\r\n Classifier.DecisionTree_test(data)\r\n\r\n Classifier.AdaBoost_test(data)\r\n\r\n Classifier.GradientBoosting_test(data)\r\n\r\n Classifier.XGBoost_test(data)\r\n\r\n Classifier.SGD_test(data)\r\n\r\n Classifier.SVC_test(data)\r\n\r\n Classifier.Ridge_test(data)\r\n\r\n Classifier.BernoulliNB_test(data)`\r\n\r\n\r\n\r\n5. Hyperparameter Turning\r\n\r\n To find the best parameters for the model\r\n\r\n\r\n\r\n `Classifier.hyperparameter_tuning()`\r\n\r\n\r\n\r\n6. Single Hyperparameter Turning\r\n\r\n To find the best parameters for the model\r\n\r\n\r\n\r\n `Classifier.logistic_hyperparameter()\r\n\r\n Classifier.KNeighbors_hyperparameter()\r\n\r\n Classifier.GaussianNB_hyperparameter()\r\n\r\n Classifier.Bagging_hyperparameter()\r\n\r\n Classifier.ExtraTrees_hyperparameter()\r\n\r\n Classifier.RandomForest_hyperparameter()\r\n\r\n Classifier.DecisionTree_hyperparameter()\r\n\r\n Classifier.AdaBoost_hyperparameter()\r\n\r\n Classifier.GradientBoosting_hyperparameter()\r\n\r\n Classifier.XGBoost_hyperparameter()\r\n\r\n Classifier.SGD_hyperparameter()\r\n\r\n Classifier.SVC_hyperparameter()\r\n\r\n Classifier.Ridge_hyperparameter()\r\n\r\n Classifier.BernoulliNB_hyperparameter()`\r\n\r\n\r\n\r\n### Regression model\r\n\r\n\r\n\r\n1. Initialize the model\r\n\r\n\r\n\r\n `Regressor=AlgoMaster.Regressor(X,Y,test_size=0.2,random_state=20)`\r\n\r\n\r\n\r\n2. Train the model and predict the results in table format\r\n\r\n\r\n\r\n `Regressor.model_training()`\r\n\r\n\r\n\r\n3. Ensemble technique\r\n\r\n\r\n\r\n `Regressor.ensemble_prediction(No. of models)`\r\n\r\n\r\n\r\n4. Single Training\r\n\r\n\r\n\r\n `data=[1,2,3,4,5,6,7,8,9]\r\n\r\n Regressor.LinearRegression_test(data)\r\n\r\n Regressor.KNeighbors_test(data)\r\n\r\n Regressor.Bagging_test(data)\r\n\r\n Regressor.ExtraTrees_test(data)\r\n\r\n Regressor.RandomForest_test(data)\r\n\r\n Regressor.DecisionTree_test(data)\r\n\r\n Regressor.AdaBoost_test(data)\r\n\r\n Regressor.GradientBoosting_test(data)\r\n\r\n Regressor.XGBoost_test(data)\r\n\r\n Regressor.TheilSen_test(data)\r\n\r\n Regressor.SVR_test(data)\r\n\r\n Regressor.Ridge_test(data)\r\n\r\n Regressor.RANSAC_test(data)\r\n\r\n Regressor.ARD_test(data)\r\n\r\n Regressor.BayesianRidge_test(data)\r\n\r\n Regressor.HuberRegressor_test(data)\r\n\r\n Regressor.Lasso_test(data)\r\n\r\n Regressor.ElasticNet_test(data)`\r\n\r\n\r\n\r\n5. Hyperparameter Turning\r\n\r\n To find the best parameters for the model\r\n\r\n\r\n\r\n `Regressor.hyperparameter_tuning()`\r\n\r\n\r\n\r\n6. Single Hyperparameter Turning\r\n\r\n To find the best parameters for the model\r\n\r\n\r\n\r\n `Regressor.KNeighbors_hyperparameter()\r\n\r\n Regressor.Bagging_hyperparameter()\r\n\r\n Regressor.ExtraTrees_hyperparameter()\r\n\r\n Regressor.RandomForest_hyperparameter()\r\n\r\n Regressor.DecisionTree_hyperparameter()\r\n\r\n Regressor.AdaBoost_hyperparameter()\r\n\r\n Regressor.GradientBoosting_hyperparameter()\r\n\r\n Regressor.XGBoost_hyperparameter()\r\n\r\n Regressor.TheilSen_hyperparameter()\r\n\r\n <!-- Regressor.SVR_hyperparameter() -->\r\n\r\n Regressor.Ridge_hyperparameter()\r\n\r\n Regressor.RANSAC_hyperparameter()\r\n\r\n Regressor.ARD_hyperparameter()\r\n\r\n Regressor.BayesianRidge_hyperparameter()\r\n\r\n Regressor.Lasso_hyperparameter()\r\n\r\n Regressor.ElasticNet_hyperparameter()`\r\n\r\n",
"bugtrack_url": null,
"license": "",
"summary": "The Regression class simplifies regression analysis by providing a convenient and flexible approach for model training, evaluation, and hyperparameter tuning.The Classifier class streamlines classification tasks by offering a well-organized framework for model selection, hyperparameter tuning,",
"version": "0.1.2",
"project_urls": null,
"split_keywords": [
"machine learning",
"classifiers",
"logistic regression",
"k-nearest neighbors",
"naive bayes",
"random forests",
"support vector machines",
"ensemble methods",
"hyperparameter tuning",
"performance evaluation",
"comparison",
"multiple classifiersadvantages",
"regression class",
"regression analysis",
" python",
"model training",
"evaluation",
"hyperparameter tuning",
"encapsulating",
"regression algorithms",
"metrics",
"simplifies",
"building",
"comparing",
"regression models",
"accurate predictions",
"insights"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "672042cb21f29b463081f5ae13ea7720a545f6dfd2386dec7f319ac5012a4b51",
"md5": "a81f663abb262e174dadd4e03daa66e1",
"sha256": "2a8c07599fd28dcb2ae7dd07b5b878d59a3475707413e82e281aa81a03423a4d"
},
"downloads": -1,
"filename": "AlgoMaster-0.1.2-py3-none-any.whl",
"has_sig": false,
"md5_digest": "a81f663abb262e174dadd4e03daa66e1",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 13639,
"upload_time": "2023-06-30T11:50:52",
"upload_time_iso_8601": "2023-06-30T11:50:52.444840Z",
"url": "https://files.pythonhosted.org/packages/67/20/42cb21f29b463081f5ae13ea7720a545f6dfd2386dec7f319ac5012a4b51/AlgoMaster-0.1.2-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "eea2e2305aab25e237d57cd426e8cb6e5dfb24d760bcafa12bd7e546adc50153",
"md5": "33a1b60b0be978d052f65a49d111e206",
"sha256": "b89f5dbd56132060777966e96fd528cff4d61c074615f72c02f1e4942ecca762"
},
"downloads": -1,
"filename": "AlgoMaster-0.1.2.tar.gz",
"has_sig": false,
"md5_digest": "33a1b60b0be978d052f65a49d111e206",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 12857,
"upload_time": "2023-06-30T11:50:54",
"upload_time_iso_8601": "2023-06-30T11:50:54.820892Z",
"url": "https://files.pythonhosted.org/packages/ee/a2/e2305aab25e237d57cd426e8cb6e5dfb24d760bcafa12bd7e546adc50153/AlgoMaster-0.1.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-06-30 11:50:54",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "algomaster"
}