Name | AnomalyLab JSON |
Version |
0.3.1
JSON |
| download |
home_page | None |
Summary | A Python package for empirical asset pricing analysis. |
upload_time | 2024-12-18 02:46:13 |
maintainer | None |
docs_url | None |
author | FinPhd |
requires_python | >=3.10 |
license | None |
keywords |
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# AnomalyLab
## Authors
Chen Haiwei, Deng Haotian
## Overview
This Python package implements various empirical methods from the book *Empirical Asset Pricing: The Cross Section of Stock Returns* by Turan G. Bali, Robert F. Engle, and Scott Murray. The package includes functionality for:
- Summary statistics
- Correlation analysis
- Persistence analysis
- Portfolio analysis
- Fama-MacBeth regression (FM regression)
Additionally, we have added several extra features, such as:
- Missing value imputation
- Data normalization
- Leading and lagging variables
- Winsorization/truncation
- Transition matrix calculation
## Installation
The package can be installed via:
```bash
pip install anomalylab
```
Raw data
{
"_id": null,
"home_page": null,
"name": "AnomalyLab",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.10",
"maintainer_email": null,
"keywords": null,
"author": "FinPhd",
"author_email": null,
"download_url": "https://files.pythonhosted.org/packages/62/90/66f99afd7c0df09dd995e154aa1ed10953b584b4f1ec04ad877f6e7f5580/anomalylab-0.3.1.tar.gz",
"platform": null,
"description": "# AnomalyLab\r\n\r\n## Authors\r\n\r\nChen Haiwei, Deng Haotian\r\n\r\n## Overview\r\n\r\nThis Python package implements various empirical methods from the book *Empirical Asset Pricing: The Cross Section of Stock Returns* by Turan G. Bali, Robert F. Engle, and Scott Murray. The package includes functionality for:\r\n\r\n- Summary statistics\r\n- Correlation analysis\r\n- Persistence analysis\r\n- Portfolio analysis\r\n- Fama-MacBeth regression (FM regression)\r\n\r\nAdditionally, we have added several extra features, such as:\r\n\r\n- Missing value imputation\r\n- Data normalization\r\n- Leading and lagging variables\r\n- Winsorization/truncation\r\n- Transition matrix calculation\r\n\r\n## Installation\r\n\r\nThe package can be installed via:\r\n\r\n```bash\r\npip install anomalylab\r\n```\r\n",
"bugtrack_url": null,
"license": null,
"summary": "A Python package for empirical asset pricing analysis.",
"version": "0.3.1",
"project_urls": null,
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "629066f99afd7c0df09dd995e154aa1ed10953b584b4f1ec04ad877f6e7f5580",
"md5": "997c2081a191236501630c82f5cd4faa",
"sha256": "16ea16d6a7215445c9b0ebc8bda74ed12a3c1751c040ee1c894b506b2afacc09"
},
"downloads": -1,
"filename": "anomalylab-0.3.1.tar.gz",
"has_sig": false,
"md5_digest": "997c2081a191236501630c82f5cd4faa",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.10",
"size": 15959572,
"upload_time": "2024-12-18T02:46:13",
"upload_time_iso_8601": "2024-12-18T02:46:13.072536Z",
"url": "https://files.pythonhosted.org/packages/62/90/66f99afd7c0df09dd995e154aa1ed10953b584b4f1ec04ad877f6e7f5580/anomalylab-0.3.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-12-18 02:46:13",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "anomalylab"
}