AnomalyLab


NameAnomalyLab JSON
Version 0.3.1 PyPI version JSON
download
home_pageNone
SummaryA Python package for empirical asset pricing analysis.
upload_time2024-12-18 02:46:13
maintainerNone
docs_urlNone
authorFinPhd
requires_python>=3.10
licenseNone
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # AnomalyLab

## Authors

Chen Haiwei, Deng Haotian

## Overview

This Python package implements various empirical methods from the book *Empirical Asset Pricing: The Cross Section of Stock Returns* by Turan G. Bali, Robert F. Engle, and Scott Murray. The package includes functionality for:

- Summary statistics
- Correlation analysis
- Persistence analysis
- Portfolio analysis
- Fama-MacBeth regression (FM regression)

Additionally, we have added several extra features, such as:

- Missing value imputation
- Data normalization
- Leading and lagging variables
- Winsorization/truncation
- Transition matrix calculation

## Installation

The package can be installed via:

```bash
pip install anomalylab
```

            

Raw data

            {
    "_id": null,
    "home_page": null,
    "name": "AnomalyLab",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.10",
    "maintainer_email": null,
    "keywords": null,
    "author": "FinPhd",
    "author_email": null,
    "download_url": "https://files.pythonhosted.org/packages/62/90/66f99afd7c0df09dd995e154aa1ed10953b584b4f1ec04ad877f6e7f5580/anomalylab-0.3.1.tar.gz",
    "platform": null,
    "description": "# AnomalyLab\r\n\r\n## Authors\r\n\r\nChen Haiwei, Deng Haotian\r\n\r\n## Overview\r\n\r\nThis Python package implements various empirical methods from the book *Empirical Asset Pricing: The Cross Section of Stock Returns* by Turan G. Bali, Robert F. Engle, and Scott Murray. The package includes functionality for:\r\n\r\n- Summary statistics\r\n- Correlation analysis\r\n- Persistence analysis\r\n- Portfolio analysis\r\n- Fama-MacBeth regression (FM regression)\r\n\r\nAdditionally, we have added several extra features, such as:\r\n\r\n- Missing value imputation\r\n- Data normalization\r\n- Leading and lagging variables\r\n- Winsorization/truncation\r\n- Transition matrix calculation\r\n\r\n## Installation\r\n\r\nThe package can be installed via:\r\n\r\n```bash\r\npip install anomalylab\r\n```\r\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "A Python package for empirical asset pricing analysis.",
    "version": "0.3.1",
    "project_urls": null,
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "629066f99afd7c0df09dd995e154aa1ed10953b584b4f1ec04ad877f6e7f5580",
                "md5": "997c2081a191236501630c82f5cd4faa",
                "sha256": "16ea16d6a7215445c9b0ebc8bda74ed12a3c1751c040ee1c894b506b2afacc09"
            },
            "downloads": -1,
            "filename": "anomalylab-0.3.1.tar.gz",
            "has_sig": false,
            "md5_digest": "997c2081a191236501630c82f5cd4faa",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.10",
            "size": 15959572,
            "upload_time": "2024-12-18T02:46:13",
            "upload_time_iso_8601": "2024-12-18T02:46:13.072536Z",
            "url": "https://files.pythonhosted.org/packages/62/90/66f99afd7c0df09dd995e154aa1ed10953b584b4f1ec04ad877f6e7f5580/anomalylab-0.3.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-12-18 02:46:13",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "anomalylab"
}
        
Elapsed time: 0.39500s