# AutoPrep - Automated Preprocessing Pipeline with Univariate Anomaly Indicators
[![PyPIv](https://img.shields.io/pypi/v/AutoPrep)](https://pypi.org/project/AutoPrep/)
![PyPI status](https://img.shields.io/pypi/status/AutoPrep)
![PyPI - Python Version](https://img.shields.io/pypi/pyversions/AutoPrep) ![PyPI - License](https://img.shields.io/pypi/l/AutoPrep)
<!-- [![Downloads](https://static.pepy.tech/badge/AutoPrep)](https://pepy.tech/project/AutoPrep) -->
This pipeline focuses on data preprocessing, standardization, and cleaning, with additional features to identify univariate anomalies.
- I used sklearn's Pipeline and Transformer concept to create this preprocessing pipeline
- Pipeline: https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html
- Transformer: https://scikit-learn.org/stable/modules/generated/sklearn.base.TransformerMixin.html
```python
pip install AutoPrep
```
#### Dependencies
- scikit-learn
- category_encoders
- bitstring
## Basic Usage
To utilize this pipeline, you need to import the necessary libraries and initialize the AutoPrep pipeline. Here is a basic example:
````python
import pandas as pd
import numpy as np
X_train = pd.DataFrame({
'ID': [1, 2, 3, 4],
'Name': ['Alice', 'Alice', 'Alice', "Alice"],
'Rank': ['A','B','C','D'],
'Age': [25, 30, 35, 40],
'Salary': [50000.00, 60000.50, 75000.75, 8_000],
'Hire Date': pd.to_datetime(['2020-01-15', '2019-05-22', '2018-08-30', '2021-04-12']),
'Is Manager': [False, True, False, ""]
})
X_test = pd.DataFrame({
'ID': [1, 2, 3, 4],
'Name': ['Alice', 'Alice', 'Alice', "Bob"],
'Rank': ['A','B','C','D'],
'Age': [25, 30, 35, np.nan],
'Salary': [50000.00, 60000.50, 75000.75, 8_000_000],
'Hire Date': pd.to_datetime(['2020-01-15', '2019-05-22', '2018-08-30', '2021-04-12']),
'Is Manager': [False, True, False, ""]
})
########################################
from AutoPrep import AutoPrep
pipeline = AutoPrep(remove_columns_no_variance=False)
pipeline.fit(X=X_train)
X_output = pipeline.transform(X=X_test)
X_output
````
## Highlights ⭐
#### 📌 Implementation of univariate methods / *Detection of univariate anomalies*
Both methods (MOD Z-Value and Tukey Method) are resilient against outliers, ensuring that the position measurement will not be biased. They also support multivariate anomaly detection algorithms in identifying univariate anomalies.
#### 📌 BinaryEncoder instead of OneHotEncoder for nominal columns / *Big Data and Performance*
Newest research shows similar results for encoding nominal columns with significantly fewer dimensions.
- (John T. Hancock and Taghi M. Khoshgoftaar. "Survey on categorical data for neural networks." In: Journal of Big Data 7.1 (2020), pp. 1–41.), Tables 2, 4
- (Diogo Seca and João Mendes-Moreira. "Benchmark of Encoders of Nominal Features for Regression." In: World Conference on Information Systems and Technologies. 2021, pp. 146–155.), P. 151
#### 📌 Transformation of time series data and standardization of data with RobustScaler / *Normalization for better prediction results*
#### 📌 Labeling of NaN values in an extra column instead of removing them / *No loss of information*
---
## Pipeline - Built-in Logic
<!-- ![Logic of Pipeline](./images/decision_rules.png) -->
![Logic of Pipeline](https://raw.githubusercontent.com/JAdelhelm/AutoPrep/main/AutoPrep/img/decision_rules.png)
<!-- ## Abstract View (Code Structure) -->
<!-- ![Abstract view of the project](./images/project.png) -->
<!-- ![Abstract view of the project](https://raw.githubusercontent.com/JAdelhelm/AutoPrep/main/images/project.png) -->
---
### Reference
- https://www.researchgate.net/publication/379640146_Detektion_von_Anomalien_in_der_Datenqualitatskontrolle_mittels_unuberwachter_Ansatze (German Thesis)
Raw data
{
"_id": null,
"home_page": "https://github.com/JAdelhelm/AutoPrepn",
"name": "AutoPrep",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": "anomaly-detection, preprocessing, automated, automated-preprocessing, cleaning",
"author": "J\u00f6rg Adelhelm",
"author_email": "J\u00f6rg Adelhelm <adeljoe@gmx.de>",
"download_url": "https://files.pythonhosted.org/packages/eb/90/eefe25bc91eb1498556e1830fbd7856d02d8c537ea93db6e358253b9afa7/autoprep-3.0.0.tar.gz",
"platform": null,
"description": "# AutoPrep - Automated Preprocessing Pipeline with Univariate Anomaly Indicators\r\n[![PyPIv](https://img.shields.io/pypi/v/AutoPrep)](https://pypi.org/project/AutoPrep/)\r\n![PyPI status](https://img.shields.io/pypi/status/AutoPrep)\r\n![PyPI - Python Version](https://img.shields.io/pypi/pyversions/AutoPrep) ![PyPI - License](https://img.shields.io/pypi/l/AutoPrep)\r\n<!-- [![Downloads](https://static.pepy.tech/badge/AutoPrep)](https://pepy.tech/project/AutoPrep) -->\r\n\r\n\r\n\r\nThis pipeline focuses on data preprocessing, standardization, and cleaning, with additional features to identify univariate anomalies.\r\n\r\n- I used sklearn's Pipeline and Transformer concept to create this preprocessing pipeline\r\n - Pipeline: https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html\r\n - Transformer: https://scikit-learn.org/stable/modules/generated/sklearn.base.TransformerMixin.html\r\n\r\n\r\n```python\r\npip install AutoPrep\r\n```\r\n#### Dependencies\r\n- scikit-learn\r\n- category_encoders\r\n- bitstring\r\n\r\n\r\n\r\n## Basic Usage\r\nTo utilize this pipeline, you need to import the necessary libraries and initialize the AutoPrep pipeline. Here is a basic example:\r\n\r\n````python\r\nimport pandas as pd\r\nimport numpy as np\r\n\r\nX_train = pd.DataFrame({\r\n\r\n 'ID': [1, 2, 3, 4], \r\n 'Name': ['Alice', 'Alice', 'Alice', \"Alice\"], \r\n 'Rank': ['A','B','C','D'],\r\n 'Age': [25, 30, 35, 40], \r\n 'Salary': [50000.00, 60000.50, 75000.75, 8_000], \r\n 'Hire Date': pd.to_datetime(['2020-01-15', '2019-05-22', '2018-08-30', '2021-04-12']), \r\n 'Is Manager': [False, True, False, \"\"] \r\n})\r\nX_test = pd.DataFrame({\r\n\r\n 'ID': [1, 2, 3, 4], \r\n 'Name': ['Alice', 'Alice', 'Alice', \"Bob\"], \r\n 'Rank': ['A','B','C','D'],\r\n 'Age': [25, 30, 35, np.nan], \r\n 'Salary': [50000.00, 60000.50, 75000.75, 8_000_000], \r\n 'Hire Date': pd.to_datetime(['2020-01-15', '2019-05-22', '2018-08-30', '2021-04-12']), \r\n 'Is Manager': [False, True, False, \"\"] \r\n})\r\n\r\n\r\n########################################\r\nfrom AutoPrep import AutoPrep\r\n\r\npipeline = AutoPrep(remove_columns_no_variance=False)\r\n\r\npipeline.fit(X=X_train)\r\nX_output = pipeline.transform(X=X_test)\r\n\r\nX_output\r\n````\r\n\r\n## Highlights \u2b50\r\n\r\n\r\n#### \ud83d\udccc Implementation of univariate methods / *Detection of univariate anomalies*\r\nBoth methods (MOD Z-Value and Tukey Method) are resilient against outliers, ensuring that the position measurement will not be biased. They also support multivariate anomaly detection algorithms in identifying univariate anomalies.\r\n\r\n#### \ud83d\udccc BinaryEncoder instead of OneHotEncoder for nominal columns / *Big Data and Performance*\r\n Newest research shows similar results for encoding nominal columns with significantly fewer dimensions.\r\n - (John T. Hancock and Taghi M. Khoshgoftaar. \"Survey on categorical data for neural networks.\" In: Journal of Big Data 7.1 (2020), pp. 1\u201341.), Tables 2, 4\r\n - (Diogo Seca and Jo\u00e3o Mendes-Moreira. \"Benchmark of Encoders of Nominal Features for Regression.\" In: World Conference on Information Systems and Technologies. 2021, pp. 146\u2013155.), P. 151\r\n\r\n#### \ud83d\udccc Transformation of time series data and standardization of data with RobustScaler / *Normalization for better prediction results*\r\n\r\n#### \ud83d\udccc Labeling of NaN values in an extra column instead of removing them / *No loss of information*\r\n\r\n\r\n\r\n---\r\n\r\n\r\n\r\n\r\n\r\n## Pipeline - Built-in Logic\r\n<!-- ![Logic of Pipeline](./images/decision_rules.png) -->\r\n![Logic of Pipeline](https://raw.githubusercontent.com/JAdelhelm/AutoPrep/main/AutoPrep/img/decision_rules.png) \r\n\r\n\r\n\r\n\r\n\r\n<!-- ## Abstract View (Code Structure) -->\r\n<!-- ![Abstract view of the project](./images/project.png) -->\r\n<!-- ![Abstract view of the project](https://raw.githubusercontent.com/JAdelhelm/AutoPrep/main/images/project.png) -->\r\n\r\n\r\n\r\n\r\n---\r\n\r\n\r\n### Reference\r\n- https://www.researchgate.net/publication/379640146_Detektion_von_Anomalien_in_der_Datenqualitatskontrolle_mittels_unuberwachter_Ansatze (German Thesis)\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n\r\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "AutoPrep is an automated preprocessing pipeline with univariate anomaly marking",
"version": "3.0.0",
"project_urls": {
"Homepage": "https://github.com/JAdelhelm/AutoPrep",
"Issues": "https://github.com/JAdelhelm/AutoPrep/issues"
},
"split_keywords": [
"anomaly-detection",
" preprocessing",
" automated",
" automated-preprocessing",
" cleaning"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "a9b1a1ae13d80fa779f0e4fa2fb9a308e8b24e722b3c050e8cdf8a97dfec913c",
"md5": "04799e74e382315acc3303d9e376be0f",
"sha256": "97044683460ed3a452fd45f72d5d35f92454cd974ec5a4aaa9a08343f9d22bd3"
},
"downloads": -1,
"filename": "AutoPrep-3.0.0-py3-none-any.whl",
"has_sig": false,
"md5_digest": "04799e74e382315acc3303d9e376be0f",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 22370,
"upload_time": "2024-09-30T17:39:25",
"upload_time_iso_8601": "2024-09-30T17:39:25.315704Z",
"url": "https://files.pythonhosted.org/packages/a9/b1/a1ae13d80fa779f0e4fa2fb9a308e8b24e722b3c050e8cdf8a97dfec913c/AutoPrep-3.0.0-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "eb90eefe25bc91eb1498556e1830fbd7856d02d8c537ea93db6e358253b9afa7",
"md5": "3ecb3937c2d70ae479395e9fdb4feb2d",
"sha256": "70aa4189501bc21a91e6f302f4af6e29f30e9f270d7663136de1aee024a42f20"
},
"downloads": -1,
"filename": "autoprep-3.0.0.tar.gz",
"has_sig": false,
"md5_digest": "3ecb3937c2d70ae479395e9fdb4feb2d",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 14953,
"upload_time": "2024-09-30T17:39:27",
"upload_time_iso_8601": "2024-09-30T17:39:27.367427Z",
"url": "https://files.pythonhosted.org/packages/eb/90/eefe25bc91eb1498556e1830fbd7856d02d8c537ea93db6e358253b9afa7/autoprep-3.0.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-09-30 17:39:27",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "JAdelhelm",
"github_project": "AutoPrepn",
"github_not_found": true,
"lcname": "autoprep"
}