BGCfinder


NameBGCfinder JSON
Version 0.0.30 PyPI version JSON
download
home_pagehttps://github.com/jihunni/BGCfinder
SummaryBiosynthetic Gene Cluster finder with Graph Neural Network
upload_time2023-03-23 08:38:00
maintainer
docs_urlNone
authorJihun Jeung
requires_python>=3
licenseMIT
keywords biosynthetic gene cluster
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # BGCfinder : Biosynthetic Gene Cluster detection with Graph Neural Network

BGCfinder detects biosynthetic gene clusters in bacterial genomes using deep learning. BGCfinder takes a fasta file containing protein sequences and convert each of them into a graph. Graph neural network takes the input graphs to detect biosynthetic gene cluster..

- Developer : Jihun Jeung (jihun@gm.gist.ac.kr, jeung4705@gmail.com)
- Github repository : https://github.com/jihunni/BGCfinder
- PyPI project website : https://pypi.org/project/BGCfinder/

Installation requirement:
- PyTorch
- PyTorch Geometric
- Prodigal (https://github.com/hyattpd/Prodigal)


To construct the conda environment,   

```bash
$ conda create --name BGCfinder  python=3.9
$ conda init bash   
$ conda activate BGCfinder   
$ conda install pytorch==1.11.0 torchvision==0.12.0 torchaudio==0.11.0 cudatoolkit=11.3 -c pytorch
$ conda install pyg -c pyg    
$ pip install BGCfinder     
```


To download the BGCfinder model and test files,   
```bash
$ bgc-download
```

To find the protein-coding gene in bacterial genome (Installation of `Prodigal` is required for this step),
```bash
$ prodigal -f gff -i bacterial_genome_seq.fasta -a bacterial_protein_seq.fasta -o bacterial_genome_seq.gff 
```

To run BGCfinder with a fasta file containing amino acid sequence with CPU (recommended),   
```bash
$ bgcfinder bacterial_protein_seq.fasta -o output_filename_prefix -l log_record.log -d False
```

To run BGCfinder with a fasta file containing amino acid sequence with GPU,   
```bash
$ bgcfinder bacterial_protein_seq.fasta -o output_filename_prefix -l log_record.log -d True
```

The development environment of BGCfinder :    
```
'torch==1.10.0',   
'torch-geometric==2.0.2',   
'torch-scatter==2.0.9',   
'torch-sparse==0.6.12'   
```

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/jihunni/BGCfinder",
    "name": "BGCfinder",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3",
    "maintainer_email": "",
    "keywords": "Biosynthetic Gene Cluster",
    "author": "Jihun Jeung",
    "author_email": "jihun@gm.gist.ac.kr",
    "download_url": "",
    "platform": null,
    "description": "# BGCfinder : Biosynthetic Gene Cluster detection with Graph Neural Network\n\nBGCfinder detects biosynthetic gene clusters in bacterial genomes using deep learning. BGCfinder takes a fasta file containing protein sequences and convert each of them into a graph. Graph neural network takes the input graphs to detect biosynthetic gene cluster..\n\n- Developer : Jihun Jeung (jihun@gm.gist.ac.kr, jeung4705@gmail.com)\n- Github repository : https://github.com/jihunni/BGCfinder\n- PyPI project website : https://pypi.org/project/BGCfinder/\n\nInstallation requirement:\n- PyTorch\n- PyTorch Geometric\n- Prodigal (https://github.com/hyattpd/Prodigal)\n\n\nTo construct the conda environment,   \n\n```bash\n$ conda create --name BGCfinder  python=3.9\n$ conda init bash   \n$ conda activate BGCfinder   \n$ conda install pytorch==1.11.0 torchvision==0.12.0 torchaudio==0.11.0 cudatoolkit=11.3 -c pytorch\n$ conda install pyg -c pyg    \n$ pip install BGCfinder     \n```\n\n\nTo download the BGCfinder model and test files,   \n```bash\n$ bgc-download\n```\n\nTo find the protein-coding gene in bacterial genome (Installation of `Prodigal` is required for this step),\n```bash\n$ prodigal -f gff -i bacterial_genome_seq.fasta -a bacterial_protein_seq.fasta -o bacterial_genome_seq.gff \n```\n\nTo run BGCfinder with a fasta file containing amino acid sequence with CPU (recommended),   \n```bash\n$ bgcfinder bacterial_protein_seq.fasta -o output_filename_prefix -l log_record.log -d False\n```\n\nTo run BGCfinder with a fasta file containing amino acid sequence with GPU,   \n```bash\n$ bgcfinder bacterial_protein_seq.fasta -o output_filename_prefix -l log_record.log -d True\n```\n\nThe development environment of BGCfinder :    \n```\n'torch==1.10.0',   \n'torch-geometric==2.0.2',   \n'torch-scatter==2.0.9',   \n'torch-sparse==0.6.12'   \n```\n",
    "bugtrack_url": null,
    "license": "MIT",
    "summary": "Biosynthetic Gene Cluster finder with Graph Neural Network",
    "version": "0.0.30",
    "split_keywords": [
        "biosynthetic",
        "gene",
        "cluster"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "f99f01b8bfd0e1fd1790103f6749244b902fca7ba6b4ea414bc2b2bb1413a0cd",
                "md5": "fdcad80af7448a6be0699dd0cfad00ab",
                "sha256": "ba2c5bb8e3d5f37f8755d8eec4e6c057d0263da421d3cbed75a4bc40c477c18a"
            },
            "downloads": -1,
            "filename": "BGCfinder-0.0.30-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "fdcad80af7448a6be0699dd0cfad00ab",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3",
            "size": 10763,
            "upload_time": "2023-03-23T08:38:00",
            "upload_time_iso_8601": "2023-03-23T08:38:00.007154Z",
            "url": "https://files.pythonhosted.org/packages/f9/9f/01b8bfd0e1fd1790103f6749244b902fca7ba6b4ea414bc2b2bb1413a0cd/BGCfinder-0.0.30-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-03-23 08:38:00",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "github_user": "jihunni",
    "github_project": "BGCfinder",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "bgcfinder"
}
        
Elapsed time: 0.75233s