.. image:: https://github.com/houndry/barbet/blob/main/docs/images/barbet-banner.jpg?raw=true
.. start-badges
|pypi badge| |testing badge| |coverage badge| |docs badge| |black badge| |torchapp badge|
.. |pypi badge| image:: https://img.shields.io/pypi/v/barbet?color=blue
:alt: PyPI - Version
:target: https://pypi.org/project/barbet/
.. |testing badge| image:: https://github.com/houndry/barbet/actions/workflows/testing.yml/badge.svg
:target: https://github.com/houndry/barbet/actions
.. |docs badge| image:: https://github.com/houndry/barbet/actions/workflows/docs.yml/badge.svg
:target: https://houndry.github.io/barbet
.. |black badge| image:: https://img.shields.io/badge/code%20style-black-000000.svg
:target: https://github.com/psf/black
.. |coverage badge| image:: https://img.shields.io/endpoint?url=https://gist.githubusercontent.com/rbturnbull/09aad5114164b54daabe1f5efd02a009/raw/coverage-badge.json
:target: https://houndry.github.io/barbet/coverage/
.. |torchapp badge| image:: https://img.shields.io/badge/torch-app-B1230A.svg
:target: https://rbturnbull.github.io/torchapp/
.. end-badges
.. start-quickstart
Installation
==================================
Install using pip:
.. code-block:: bash
pip install git+https://github.com/houndry/barbet.git
Usage
==================================
See the options for making inferences with the command:
.. code-block:: bash
barbet --help
Run
==================================
.. code-block:: bash
barbet --input GCA_000006945.2.fna --output-dir outputs
Or using the large model:
.. code-block:: bash
barbet --input GCA_000006945.2.fna --output-dir outputs-large --large
Training
==================================
You can train the model on releases from GTDB or your own custom dataset.
See the instructions in the documentation for `preprocessing <https://houndry.github.io/barbet/preprocessing.html>`_ and `training <https://houndry.github.io/barbet/training.html>`_.
.. end-quickstart
Credits
==================================
.. start-credits
`Robert Turnbull <https://robturnbull.com>`_, Mar Quiroga, Gabriele Marini, Torsten Seemann, Wytamma Wirth
For more information contact: <wytamma.wirth@unimelb.edu.au>
Created using torchapp (https://github.com/rbturnbull/torchapp).
.. end-credits
Raw data
{
"_id": null,
"home_page": null,
"name": "Barbet",
"maintainer": null,
"docs_url": null,
"requires_python": "<3.13,>=3.10",
"maintainer_email": null,
"keywords": "torchapp, pytorch, deep learning, command-line interface",
"author": "Robert Turnbull, Mar Quiroga, Gabriele Marini, Torsten Seemann, Wytamma Wirth",
"author_email": null,
"download_url": "https://files.pythonhosted.org/packages/d0/43/0eacfc42530598b38f1bf09be62b58ca0d82279e3394721be298e17fee52/barbet-0.1.1.tar.gz",
"platform": null,
"description": ".. image:: https://github.com/houndry/barbet/blob/main/docs/images/barbet-banner.jpg?raw=true\n\n.. start-badges\n\n|pypi badge| |testing badge| |coverage badge| |docs badge| |black badge| |torchapp badge|\n\n.. |pypi badge| image:: https://img.shields.io/pypi/v/barbet?color=blue\n :alt: PyPI - Version\n :target: https://pypi.org/project/barbet/\n\n.. |testing badge| image:: https://github.com/houndry/barbet/actions/workflows/testing.yml/badge.svg\n :target: https://github.com/houndry/barbet/actions\n\n.. |docs badge| image:: https://github.com/houndry/barbet/actions/workflows/docs.yml/badge.svg\n :target: https://houndry.github.io/barbet\n \n.. |black badge| image:: https://img.shields.io/badge/code%20style-black-000000.svg\n :target: https://github.com/psf/black\n \n.. |coverage badge| image:: https://img.shields.io/endpoint?url=https://gist.githubusercontent.com/rbturnbull/09aad5114164b54daabe1f5efd02a009/raw/coverage-badge.json\n :target: https://houndry.github.io/barbet/coverage/\n\n.. |torchapp badge| image:: https://img.shields.io/badge/torch-app-B1230A.svg\n :target: https://rbturnbull.github.io/torchapp/\n \n.. end-badges\n\n.. start-quickstart\n\nInstallation\n==================================\n\nInstall using pip:\n\n.. code-block:: bash\n\n pip install git+https://github.com/houndry/barbet.git\n\n\nUsage\n==================================\n\nSee the options for making inferences with the command:\n\n.. code-block:: bash\n\n barbet --help\n\n\nRun\n==================================\n\n.. code-block:: bash\n\n barbet --input GCA_000006945.2.fna --output-dir outputs\n\nOr using the large model:\n\n.. code-block:: bash\n\n barbet --input GCA_000006945.2.fna --output-dir outputs-large --large\n\n\nTraining\n==================================\n\nYou can train the model on releases from GTDB or your own custom dataset.\nSee the instructions in the documentation for `preprocessing <https://houndry.github.io/barbet/preprocessing.html>`_ and `training <https://houndry.github.io/barbet/training.html>`_.\n\n.. end-quickstart\n\n\nCredits\n==================================\n\n.. start-credits\n\n`Robert Turnbull <https://robturnbull.com>`_, Mar Quiroga, Gabriele Marini, Torsten Seemann, Wytamma Wirth\n\nFor more information contact: <wytamma.wirth@unimelb.edu.au>\n\nCreated using torchapp (https://github.com/rbturnbull/torchapp).\n\n.. end-credits\n\n\n",
"bugtrack_url": null,
"license": "Apache-2.0",
"summary": "Bacteria and Archaea Representation using Bidirectional Embeddings for Taxonomic classification",
"version": "0.1.1",
"project_urls": {
"Documentation": "https://houndry.github.io/barbet",
"Homepage": "https://github.com/houndry/barbet/",
"Repository": "https://github.com/houndry/barbet/"
},
"split_keywords": [
"torchapp",
" pytorch",
" deep learning",
" command-line interface"
],
"urls": [
{
"comment_text": null,
"digests": {
"blake2b_256": "735e70a6172ef2ca1ddf29a5cbf34f8d61d0001dad8b2ffa115fe57839c20e47",
"md5": "d17e0e9b2f99b719466d7e9ca6f5216f",
"sha256": "966ae0e53d8561fdbc48e17f605a25590cbbec1ea7506d8277387490e86a6386"
},
"downloads": -1,
"filename": "barbet-0.1.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "d17e0e9b2f99b719466d7e9ca6f5216f",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": "<3.13,>=3.10",
"size": 29564,
"upload_time": "2025-08-12T04:14:03",
"upload_time_iso_8601": "2025-08-12T04:14:03.696709Z",
"url": "https://files.pythonhosted.org/packages/73/5e/70a6172ef2ca1ddf29a5cbf34f8d61d0001dad8b2ffa115fe57839c20e47/barbet-0.1.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": null,
"digests": {
"blake2b_256": "d0430eacfc42530598b38f1bf09be62b58ca0d82279e3394721be298e17fee52",
"md5": "fec94f4901afcc380ab301d87e7ed381",
"sha256": "d7b1e2a5596e9427d10c0b4b2095146a76ff2bba4ca24c6862330227ca9c8480"
},
"downloads": -1,
"filename": "barbet-0.1.1.tar.gz",
"has_sig": false,
"md5_digest": "fec94f4901afcc380ab301d87e7ed381",
"packagetype": "sdist",
"python_version": "source",
"requires_python": "<3.13,>=3.10",
"size": 26396,
"upload_time": "2025-08-12T04:14:05",
"upload_time_iso_8601": "2025-08-12T04:14:05.822127Z",
"url": "https://files.pythonhosted.org/packages/d0/43/0eacfc42530598b38f1bf09be62b58ca0d82279e3394721be298e17fee52/barbet-0.1.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2025-08-12 04:14:05",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "houndry",
"github_project": "barbet",
"travis_ci": false,
"coveralls": true,
"github_actions": true,
"lcname": "barbet"
}