Name | BiLLM JSON |
Version |
0.1.6
JSON |
| download |
home_page | None |
Summary | Tool for converting LLMs from uni-directional to bi-directional for tasks like classification and sentence embeddings. |
upload_time | 2024-06-05 07:49:09 |
maintainer | None |
docs_url | None |
author | None |
requires_python | >=3.8 |
license | MIT |
keywords |
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
# BiLLM
Tool for converting LLMs from uni-directional to bi-directional for tasks like classification and sentence embeddings. Compatible with 🤗 transformers.
<a href="https://arxiv.org/abs/2310.01208">
<img src="https://img.shields.io/badge/Arxiv-2310.01208-yellow.svg?style=flat-square" alt="https://arxiv.org/abs/2310.01208" />
</a>
<a href="https://arxiv.org/abs/2311.05296">
<img src="https://img.shields.io/badge/Arxiv-2311.05296-yellow.svg?style=flat-square" alt="https://arxiv.org/abs/2311.05296" />
</a>
<a href="https://pypi.org/project/billm/">
<img src="https://img.shields.io/pypi/v/billm?style=flat-square" alt="PyPI version" />
</a>
<a href="https://pypi.org/project/billm/">
<img src="https://img.shields.io/pypi/dm/billm?style=flat-square" alt="PyPI Downloads" />
</a>
<a href="http://makeapullrequest.com">
<img src="https://img.shields.io/badge/PRs-welcome-brightgreen.svg?style=flat-square" alt="http://makeapullrequest.com" />
</a>
<a href="https://pdm-project.org">
<img src="https://img.shields.io/badge/pdm-managed-blueviolet" alt="https://pdm-project.org" />
</a>
## Supported Models
- LLaMA
- Mistral
- Qwen2
- OpenELM
## Usage
1) `python -m pip install -U billm`
2) Specify start index for bi-directional layers via `export BiLLM_START_INDEX={layer_index}`. if not specified, default is 0, i.e., all layers are bi-directional. If set to -1, BiLLM is disabled.
3) Import LLMs from BiLLM and initialize them as usual with transformers.
```diff
- from transformers import (
- LLamaModel,
- LLamaForCausalLM,
- LLamaForSequenceClassification,
- MistralModel,
- MistralForCausalLM,
- MistralForSequenceClassification
- Qwen2Model,
- Qwen2ForCausalLM,
- Qwen2ForSequenceClassification
- )
+ from billm import (
+ LLamaModel,
+ LLamaForCausalLM,
+ LLamaForSequenceClassification,
+ LLamaForTokenClassification,
+ MistralModel,
+ MistralForCausalLM,
+ MistralForSequenceClassification,
+ MistralForTokenClassification,
+ Qwen2Model,
+ Qwen2ForCausalLM,
+ Qwen2ForSequenceClassification,
+ Qwen2ForTokenClassification
+ OpenELMModel,
+ OpenELMForCausalLM,
+ OpenELMForSequenceClassification,
+ OpenELMForTokenClassification
+ )
```
## Examples
### NER
**training:**
```bash
$ cd examples
$ WANDB_MODE=disabled BiLLM_START_INDEX=0 CUDA_VISIBLE_DEVICES=3 python billm_ner.py \
--model_name_or_path mistralai/Mistral-7B-v0.1 \
--dataset_name_or_path conll2003 \
--push_to_hub 0
```
**inference:**
```python
from transformers import AutoTokenizer, pipeline
from peft import PeftModel, PeftConfig
from billm import MistralForTokenClassification
label2id = {'O': 0, 'B-PER': 1, 'I-PER': 2, 'B-ORG': 3, 'I-ORG': 4, 'B-LOC': 5, 'I-LOC': 6, 'B-MISC': 7, 'I-MISC': 8}
id2label = {v: k for k, v in label2id.items()}
model_id = 'WhereIsAI/billm-mistral-7b-conll03-ner'
tokenizer = AutoTokenizer.from_pretrained(model_id)
peft_config = PeftConfig.from_pretrained(model_id)
model = MistralForTokenClassification.from_pretrained(
peft_config.base_model_name_or_path,
num_labels=len(label2id), id2label=id2label, label2id=label2id
)
model = PeftModel.from_pretrained(model, model_id)
# merge and unload is necessary for inference
model = model.merge_and_unload()
token_classifier = pipeline("token-classification", model=model, tokenizer=tokenizer, aggregation_strategy="simple")
sentence = "I live in Hong Kong. I am a student at Hong Kong PolyU."
tokens = token_classifier(sentence)
print(tokens)
```
### Sentence Embeddings
refer to AnglE: https://github.com/SeanLee97/AnglE
## Citation
If you use this toolkit in your work, please cite the following paper:
1) For sentence embeddings modeling:
```bibtex
@inproceedings{li2024bellm,
title = "BeLLM: Backward Dependency Enhanced Large Language Model for Sentence Embeddings",
author = "Li, Xianming and Li, Jing",
booktitle = "Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics",
year = "2024",
publisher = "Association for Computational Linguistics"
}
```
2) For other tasks:
```bibtex
@article{li2023label,
title={Label supervised llama finetuning},
author={Li, Zongxi and Li, Xianming and Liu, Yuzhang and Xie, Haoran and Li, Jing and Wang, Fu-lee and Li, Qing and Zhong, Xiaoqin},
journal={arXiv preprint arXiv:2310.01208},
year={2023}
}
```
Raw data
{
"_id": null,
"home_page": null,
"name": "BiLLM",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.8",
"maintainer_email": null,
"keywords": null,
"author": null,
"author_email": "Sean Lee <xmlee97@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/e6/36/76a8fe630ebe0a2f1def45ff0031330c4d755adc4c23291c70840d2dc3e1/billm-0.1.6.tar.gz",
"platform": null,
"description": "# BiLLM\nTool for converting LLMs from uni-directional to bi-directional for tasks like classification and sentence embeddings. Compatible with \ud83e\udd17 transformers.\n\n<a href=\"https://arxiv.org/abs/2310.01208\">\n <img src=\"https://img.shields.io/badge/Arxiv-2310.01208-yellow.svg?style=flat-square\" alt=\"https://arxiv.org/abs/2310.01208\" />\n</a>\n<a href=\"https://arxiv.org/abs/2311.05296\">\n <img src=\"https://img.shields.io/badge/Arxiv-2311.05296-yellow.svg?style=flat-square\" alt=\"https://arxiv.org/abs/2311.05296\" />\n</a>\n<a href=\"https://pypi.org/project/billm/\">\n <img src=\"https://img.shields.io/pypi/v/billm?style=flat-square\" alt=\"PyPI version\" />\n</a>\n<a href=\"https://pypi.org/project/billm/\">\n <img src=\"https://img.shields.io/pypi/dm/billm?style=flat-square\" alt=\"PyPI Downloads\" />\n</a>\n<a href=\"http://makeapullrequest.com\">\n <img src=\"https://img.shields.io/badge/PRs-welcome-brightgreen.svg?style=flat-square\" alt=\"http://makeapullrequest.com\" />\n</a>\n<a href=\"https://pdm-project.org\">\n <img src=\"https://img.shields.io/badge/pdm-managed-blueviolet\" alt=\"https://pdm-project.org\" />\n</a>\n\n\n## Supported Models\n\n- LLaMA\n- Mistral\n- Qwen2\n- OpenELM\n\n## Usage\n\n1) `python -m pip install -U billm`\n\n2) Specify start index for bi-directional layers via `export BiLLM_START_INDEX={layer_index}`. if not specified, default is 0, i.e., all layers are bi-directional. If set to -1, BiLLM is disabled.\n\n3) Import LLMs from BiLLM and initialize them as usual with transformers.\n\n```diff\n- from transformers import (\n- LLamaModel,\n- LLamaForCausalLM,\n- LLamaForSequenceClassification,\n- MistralModel,\n- MistralForCausalLM,\n- MistralForSequenceClassification\n- Qwen2Model,\n- Qwen2ForCausalLM,\n- Qwen2ForSequenceClassification\n- )\n\n+ from billm import (\n+ LLamaModel,\n+ LLamaForCausalLM,\n+ LLamaForSequenceClassification,\n+ LLamaForTokenClassification,\n+ MistralModel,\n+ MistralForCausalLM,\n+ MistralForSequenceClassification,\n+ MistralForTokenClassification,\n+ Qwen2Model,\n+ Qwen2ForCausalLM,\n+ Qwen2ForSequenceClassification,\n+ Qwen2ForTokenClassification\n+ OpenELMModel,\n+ OpenELMForCausalLM,\n+ OpenELMForSequenceClassification,\n+ OpenELMForTokenClassification\n+ )\n```\n\n## Examples\n\n### NER\n\n**training:**\n\n```bash\n$ cd examples\n$ WANDB_MODE=disabled BiLLM_START_INDEX=0 CUDA_VISIBLE_DEVICES=3 python billm_ner.py \\\n--model_name_or_path mistralai/Mistral-7B-v0.1 \\\n--dataset_name_or_path conll2003 \\\n--push_to_hub 0\n```\n\n**inference:**\n\n```python\nfrom transformers import AutoTokenizer, pipeline\nfrom peft import PeftModel, PeftConfig\nfrom billm import MistralForTokenClassification\n\n\nlabel2id = {'O': 0, 'B-PER': 1, 'I-PER': 2, 'B-ORG': 3, 'I-ORG': 4, 'B-LOC': 5, 'I-LOC': 6, 'B-MISC': 7, 'I-MISC': 8}\nid2label = {v: k for k, v in label2id.items()}\nmodel_id = 'WhereIsAI/billm-mistral-7b-conll03-ner'\ntokenizer = AutoTokenizer.from_pretrained(model_id)\npeft_config = PeftConfig.from_pretrained(model_id)\nmodel = MistralForTokenClassification.from_pretrained(\n peft_config.base_model_name_or_path,\n num_labels=len(label2id), id2label=id2label, label2id=label2id\n)\nmodel = PeftModel.from_pretrained(model, model_id)\n# merge and unload is necessary for inference\nmodel = model.merge_and_unload()\n\ntoken_classifier = pipeline(\"token-classification\", model=model, tokenizer=tokenizer, aggregation_strategy=\"simple\")\nsentence = \"I live in Hong Kong. I am a student at Hong Kong PolyU.\"\ntokens = token_classifier(sentence)\nprint(tokens)\n```\n\n### Sentence Embeddings\n\nrefer to AnglE: https://github.com/SeanLee97/AnglE\n\n\n## Citation\n\nIf you use this toolkit in your work, please cite the following paper:\n\n1) For sentence embeddings modeling:\n\n```bibtex\n@inproceedings{li2024bellm,\n title = \"BeLLM: Backward Dependency Enhanced Large Language Model for Sentence Embeddings\",\n author = \"Li, Xianming and Li, Jing\",\n booktitle = \"Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics\",\n year = \"2024\",\n publisher = \"Association for Computational Linguistics\"\n}\n```\n\n2) For other tasks:\n\n```bibtex\n@article{li2023label,\n title={Label supervised llama finetuning},\n author={Li, Zongxi and Li, Xianming and Liu, Yuzhang and Xie, Haoran and Li, Jing and Wang, Fu-lee and Li, Qing and Zhong, Xiaoqin},\n journal={arXiv preprint arXiv:2310.01208},\n year={2023}\n}\n```\n",
"bugtrack_url": null,
"license": "MIT",
"summary": "Tool for converting LLMs from uni-directional to bi-directional for tasks like classification and sentence embeddings.",
"version": "0.1.6",
"project_urls": null,
"split_keywords": [],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "2434025291bf2a5c3b5479b5d630cd9eaf30f2bb7ce66ba67c62e7fa58251308",
"md5": "f62641d97d3ff8fe44ab086a45c621d5",
"sha256": "4b4fd197913e36b681e8470dbbec4d56494cdc0090691a9d2a13ba6a047cee63"
},
"downloads": -1,
"filename": "billm-0.1.6-py3-none-any.whl",
"has_sig": false,
"md5_digest": "f62641d97d3ff8fe44ab086a45c621d5",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.8",
"size": 35241,
"upload_time": "2024-06-05T07:49:07",
"upload_time_iso_8601": "2024-06-05T07:49:07.354046Z",
"url": "https://files.pythonhosted.org/packages/24/34/025291bf2a5c3b5479b5d630cd9eaf30f2bb7ce66ba67c62e7fa58251308/billm-0.1.6-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "e63676a8fe630ebe0a2f1def45ff0031330c4d755adc4c23291c70840d2dc3e1",
"md5": "fcd4c4cf352b77668d291b13f84325ad",
"sha256": "e79f543c322de9750cbd4dcfdbbf89e79ab6f13ea4b0bdbda8dcfa753acb6266"
},
"downloads": -1,
"filename": "billm-0.1.6.tar.gz",
"has_sig": false,
"md5_digest": "fcd4c4cf352b77668d291b13f84325ad",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.8",
"size": 28567,
"upload_time": "2024-06-05T07:49:09",
"upload_time_iso_8601": "2024-06-05T07:49:09.340796Z",
"url": "https://files.pythonhosted.org/packages/e6/36/76a8fe630ebe0a2f1def45ff0031330c4d755adc4c23291c70840d2dc3e1/billm-0.1.6.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-06-05 07:49:09",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "billm"
}