BindingGP


NameBindingGP JSON
Version 0.0.36 PyPI version JSON
download
home_pagehttps://github.com/boliqq07/bgp
SummaryThis is for symbolic regression.Some of code are non-originality, just copy for use. All the referenced code are marked,details can be shown in their sources
upload_time2023-05-05 12:50:43
maintainerwangchangxin
docs_urlNone
authorwangchangxin
requires_python>=3.6
license
keywords symbolic regression
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            <div align="center">
  <img alt="BGP" src="https://github.com/MGEdata/bgp/blob/master/img.jpg?raw=true">
</div>

[![Python Versions](https://img.shields.io/pypi/pyversions/bindinggp.svg)](https://pypi.org/project/bindinggp/)
[![Version](https://img.shields.io/github/tag/MGEdata/bgp.svg)](https://github.com/MGEdata/bgp/releases/latest)
![pypi Versions](https://badge.fury.io/py/BindingGP.svg)


BGP
----------------------
Welcome to BGP.

BGP (Binding Genetic Programming) is an open python library that implements a comprehensive set of symbolic regression
tools for materials informatics.

This tool contains a symbol regression tool with dimension calculation, which is aimed at establish expressions with
physical limitation.

BGP inspired by:

[XenonPy](https://github.com/yoshida-lab/XenonPy),
[matminer](https://hackingmaterials.github.io/matminer/ ),
[deap](https://github.com/DEAP/deap),
[sympy](https://www.sympy.org/en/index.html)

Quick Install
----------------------

```bash
pip install BindingGP
```

Document
----------------------
The usage of this package and **install** deatils are collected in BGP document.

Turn to [BGP document](https://bgp.readthedocs.io/en/latest/) for more details.

License
----------------------
GNU LGPL-3.0 License







            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/boliqq07/bgp",
    "name": "BindingGP",
    "maintainer": "wangchangxin",
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": "",
    "keywords": "symbolic regression",
    "author": "wangchangxin",
    "author_email": "986798607@qq.com",
    "download_url": "https://files.pythonhosted.org/packages/b5/c9/32c52ff5eb19c9e512b89eed3bf60e47b38413baca75162ddf72b2837209/BindingGP-0.0.36.tar.gz",
    "platform": "Windows",
    "description": "<div align=\"center\">\r\n  <img alt=\"BGP\" src=\"https://github.com/MGEdata/bgp/blob/master/img.jpg?raw=true\">\r\n</div>\r\n\r\n[![Python Versions](https://img.shields.io/pypi/pyversions/bindinggp.svg)](https://pypi.org/project/bindinggp/)\r\n[![Version](https://img.shields.io/github/tag/MGEdata/bgp.svg)](https://github.com/MGEdata/bgp/releases/latest)\r\n![pypi Versions](https://badge.fury.io/py/BindingGP.svg)\r\n\r\n\r\nBGP\r\n----------------------\r\nWelcome to BGP.\r\n\r\nBGP (Binding Genetic Programming) is an open python library that implements a comprehensive set of symbolic regression\r\ntools for materials informatics.\r\n\r\nThis tool contains a symbol regression tool with dimension calculation, which is aimed at establish expressions with\r\nphysical limitation.\r\n\r\nBGP inspired by:\r\n\r\n[XenonPy](https://github.com/yoshida-lab/XenonPy),\r\n[matminer](https://hackingmaterials.github.io/matminer/ ),\r\n[deap](https://github.com/DEAP/deap),\r\n[sympy](https://www.sympy.org/en/index.html)\r\n\r\nQuick Install\r\n----------------------\r\n\r\n```bash\r\npip install BindingGP\r\n```\r\n\r\nDocument\r\n----------------------\r\nThe usage of this package and **install** deatils are collected in BGP document.\r\n\r\nTurn to [BGP document](https://bgp.readthedocs.io/en/latest/) for more details.\r\n\r\nLicense\r\n----------------------\r\nGNU LGPL-3.0 License\r\n\r\n\r\n\r\n\r\n\r\n\r\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "This is for symbolic regression.Some of code are non-originality, just copy for use. All the referenced code are marked,details can be shown in their sources",
    "version": "0.0.36",
    "project_urls": {
        "Homepage": "https://github.com/boliqq07/bgp"
    },
    "split_keywords": [
        "symbolic",
        "regression"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "b5c932c52ff5eb19c9e512b89eed3bf60e47b38413baca75162ddf72b2837209",
                "md5": "eb2b6f916e44a0f5e9949b997d18bd42",
                "sha256": "09daa9353c52c2e2549f58c8f490332b076be0d57c3d1e69a0366679e75e6b05"
            },
            "downloads": -1,
            "filename": "BindingGP-0.0.36.tar.gz",
            "has_sig": false,
            "md5_digest": "eb2b6f916e44a0f5e9949b997d18bd42",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 65114,
            "upload_time": "2023-05-05T12:50:43",
            "upload_time_iso_8601": "2023-05-05T12:50:43.844774Z",
            "url": "https://files.pythonhosted.org/packages/b5/c9/32c52ff5eb19c9e512b89eed3bf60e47b38413baca75162ddf72b2837209/BindingGP-0.0.36.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-05-05 12:50:43",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "boliqq07",
    "github_project": "bgp",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "requirements": [],
    "lcname": "bindinggp"
}
        
Elapsed time: 1.28799s