Blauwal3-Associate
=================
Orange add-on for enumerating frequent itemsets and association rules mining.
See [documentation](http://orange3-associate.readthedocs.org/).
Features
--------
#### Association Rules
* induce association and classification rules
* filter rules by the antecedent or consequent part
#### Frequent Itemsets
* find frequent itemsets
* set criteria for search
* filter the results with regular expression
Raw data
{
"_id": null,
"home_page": "https://github.com/biolab/orange3-associate",
"name": "Blauwal3-Associate",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.9",
"maintainer_email": null,
"keywords": "frequent itemset mining, frequent pattern mining, association rules, apriori, fp-growth, frequent patterns, FIM, FPM, orange3 add-on",
"author": "\u5927\u5723\u5b9e\u9a8c\u697c",
"author_email": "dashenglab@163.com",
"download_url": "https://files.pythonhosted.org/packages/66/5f/6426c28c1f0e6fcc83dd19fc6cce10487b2788c319feb386d42ffd512905/blauwal3_associate-1.3.0.tar.gz",
"platform": null,
"description": "Blauwal3-Associate\r\n=================\r\n\r\nOrange add-on for enumerating frequent itemsets and association rules mining.\r\n\r\nSee [documentation](http://orange3-associate.readthedocs.org/).\r\n\r\n\r\nFeatures\r\n--------\r\n#### Association Rules\r\n* induce association and classification rules\r\n* filter rules by the antecedent or consequent part\r\n\r\n#### Frequent Itemsets\r\n* find frequent itemsets\r\n* set criteria for search\r\n* filter the results with regular expression\r\n",
"bugtrack_url": null,
"license": null,
"summary": "\u7528\u4e8e\u6316\u6398\u9891\u7e41\u9879\u96c6\u548c\u5173\u8054\u89c4\u5219\u7684\u84dd\u9cb8\u63d2\u4ef6",
"version": "1.3.0",
"project_urls": {
"Homepage": "https://github.com/biolab/orange3-associate"
},
"split_keywords": [
"frequent itemset mining",
" frequent pattern mining",
" association rules",
" apriori",
" fp-growth",
" frequent patterns",
" fim",
" fpm",
" orange3 add-on"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "298dd1848cbfbf50f0cbaae0394087b4549d6dbebbc06af0c5d0da69513e9410",
"md5": "ef48cc84beccea5b7cccd3909f119a65",
"sha256": "9e5c55f279dc47eceeec5c50b22aa938c42ac411e4ec1e461fe692f8b7e01013"
},
"downloads": -1,
"filename": "Blauwal3_Associate-1.3.0-cp310-cp310-win_amd64.whl",
"has_sig": false,
"md5_digest": "ef48cc84beccea5b7cccd3909f119a65",
"packagetype": "bdist_wheel",
"python_version": "cp310",
"requires_python": ">=3.9",
"size": 76316,
"upload_time": "2024-09-27T08:10:25",
"upload_time_iso_8601": "2024-09-27T08:10:25.344146Z",
"url": "https://files.pythonhosted.org/packages/29/8d/d1848cbfbf50f0cbaae0394087b4549d6dbebbc06af0c5d0da69513e9410/Blauwal3_Associate-1.3.0-cp310-cp310-win_amd64.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "665f6426c28c1f0e6fcc83dd19fc6cce10487b2788c319feb386d42ffd512905",
"md5": "df0e2292d3aeb5b99986a4b04e9acc43",
"sha256": "20e4e5bc8866c1b4e7568d3072c366b70aa7402bc97135ec10383c37deec02ef"
},
"downloads": -1,
"filename": "blauwal3_associate-1.3.0.tar.gz",
"has_sig": false,
"md5_digest": "df0e2292d3aeb5b99986a4b04e9acc43",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.9",
"size": 512960,
"upload_time": "2024-09-27T08:10:27",
"upload_time_iso_8601": "2024-09-27T08:10:27.775611Z",
"url": "https://files.pythonhosted.org/packages/66/5f/6426c28c1f0e6fcc83dd19fc6cce10487b2788c319feb386d42ffd512905/blauwal3_associate-1.3.0.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-09-27 08:10:27",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "biolab",
"github_project": "orange3-associate",
"travis_ci": false,
"coveralls": true,
"github_actions": true,
"tox": true,
"lcname": "blauwal3-associate"
}