Blauwal3-Timeseries
==================
Orange add-on for analyzing, visualizing, manipulating, and forecasting time
series data. The add-on includes ARIMA and VAR models, model evaluation, time
series preprocessing, seasonal adjustment and a wide array of visualizations.
See [documentation](http://orange3-timeseries.readthedocs.org/).
Features
--------
#### Use time series data
* reinterpret data as time series
* induce missing values
* generate time series from Yahoo Finance stock market data
#### Analysis of time series data
* aggregate data by a given time interval
* decompose the time series into seasonal, trend, and residual components
* apply rolling window functions to the time series
* make forecasts for the future
* evaluate models
#### Visualize time series data
* visualize time series' sequence and progression
* visualize variables' auto-correlation
* visualize time series' cycles, seasonality, periodicity, and most significant periods
Raw data
{
"_id": null,
"home_page": "https://github.com/biolab/orange3-timeseries",
"name": "Blauwal3-Timeseries",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": "time series, sequence analysis, orange3 add-on, ARIMA, VAR model, forecast",
"author": "\u5927\u5723\u5b9e\u9a8c\u697c",
"author_email": "dashenglab@163.com",
"download_url": "https://files.pythonhosted.org/packages/27/f3/1504a7b20e58a4fa09bb06fa6411915c06db19f13a044a8a86fffbf2d485/blauwal3_timeseries-0.6.3.tar.gz",
"platform": null,
"description": "Blauwal3-Timeseries\r\n==================\r\n\r\nOrange add-on for analyzing, visualizing, manipulating, and forecasting time\r\nseries data. The add-on includes ARIMA and VAR models, model evaluation, time\r\nseries preprocessing, seasonal adjustment and a wide array of visualizations.\r\nSee [documentation](http://orange3-timeseries.readthedocs.org/).\r\n\r\nFeatures\r\n--------\r\n#### Use time series data\r\n* reinterpret data as time series\r\n* induce missing values\r\n* generate time series from Yahoo Finance stock market data\r\n\r\n#### Analysis of time series data\r\n* aggregate data by a given time interval\r\n* decompose the time series into seasonal, trend, and residual components\r\n* apply rolling window functions to the time series\r\n* make forecasts for the future\r\n* evaluate models\r\n\r\n#### Visualize time series data\r\n* visualize time series' sequence and progression\r\n* visualize variables' auto-correlation\r\n* visualize time series' cycles, seasonality, periodicity, and most significant periods\r\n",
"bugtrack_url": null,
"license": "GPLv3+",
"summary": "\u7528\u4e8e\u63a2\u7d22\u65f6\u95f4\u5e8f\u5217\u548c\u987a\u5e8f\u6570\u636e\u7684\u84dd\u9cb8\u63d2\u4ef6\u3002",
"version": "0.6.3",
"project_urls": {
"Homepage": "https://github.com/biolab/orange3-timeseries"
},
"split_keywords": [
"time series",
" sequence analysis",
" orange3 add-on",
" arima",
" var model",
" forecast"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "4743c65f2a618c1be6e0b2c17642cdfd9fc41a48b3dd1918fb5219e1a1d97147",
"md5": "62f82176ef0cdd985c4e8b2db3a543cd",
"sha256": "b33ecf547fd71b482a4772e6b380f3ac3a706455ca88683544b35de504c362c4"
},
"downloads": -1,
"filename": "Blauwal3_Timeseries-0.6.3-py3-none-any.whl",
"has_sig": false,
"md5_digest": "62f82176ef0cdd985c4e8b2db3a543cd",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": null,
"size": 302598,
"upload_time": "2024-09-27T08:27:16",
"upload_time_iso_8601": "2024-09-27T08:27:16.920193Z",
"url": "https://files.pythonhosted.org/packages/47/43/c65f2a618c1be6e0b2c17642cdfd9fc41a48b3dd1918fb5219e1a1d97147/Blauwal3_Timeseries-0.6.3-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "27f31504a7b20e58a4fa09bb06fa6411915c06db19f13a044a8a86fffbf2d485",
"md5": "c5371ff34a8785ac6d2c701f15cf80d5",
"sha256": "a996b951230c5163544ae30f30533314acff70658b0199271b9343212e1942d9"
},
"downloads": -1,
"filename": "blauwal3_timeseries-0.6.3.tar.gz",
"has_sig": false,
"md5_digest": "c5371ff34a8785ac6d2c701f15cf80d5",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 2286841,
"upload_time": "2024-09-27T08:27:19",
"upload_time_iso_8601": "2024-09-27T08:27:19.774038Z",
"url": "https://files.pythonhosted.org/packages/27/f3/1504a7b20e58a4fa09bb06fa6411915c06db19f13a044a8a86fffbf2d485/blauwal3_timeseries-0.6.3.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-09-27 08:27:19",
"github": true,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"github_user": "biolab",
"github_project": "orange3-timeseries",
"travis_ci": false,
"coveralls": true,
"github_actions": true,
"tox": true,
"lcname": "blauwal3-timeseries"
}