Blauwal3-Timeseries


NameBlauwal3-Timeseries JSON
Version 0.6.3 PyPI version JSON
download
home_pagehttps://github.com/biolab/orange3-timeseries
Summary用于探索时间序列和顺序数据的蓝鲸插件。
upload_time2024-09-27 08:27:19
maintainerNone
docs_urlNone
author大圣实验楼
requires_pythonNone
licenseGPLv3+
keywords time series sequence analysis orange3 add-on arima var model forecast
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage
            Blauwal3-Timeseries
==================

Orange add-on for analyzing, visualizing, manipulating, and forecasting time
series data. The add-on includes ARIMA and VAR models, model evaluation, time
series preprocessing, seasonal adjustment and a wide array of visualizations.
See [documentation](http://orange3-timeseries.readthedocs.org/).

Features
--------
#### Use time series data
* reinterpret data as time series
* induce missing values
* generate time series from Yahoo Finance stock market data

#### Analysis of time series data
* aggregate data by a given time interval
* decompose the time series into seasonal, trend, and residual components
* apply rolling window functions to the time series
* make forecasts for the future
* evaluate models

#### Visualize time series data
* visualize time series' sequence and progression
* visualize variables' auto-correlation
* visualize time series' cycles, seasonality, periodicity, and most significant periods

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/biolab/orange3-timeseries",
    "name": "Blauwal3-Timeseries",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "time series, sequence analysis, orange3 add-on, ARIMA, VAR model, forecast",
    "author": "\u5927\u5723\u5b9e\u9a8c\u697c",
    "author_email": "dashenglab@163.com",
    "download_url": "https://files.pythonhosted.org/packages/27/f3/1504a7b20e58a4fa09bb06fa6411915c06db19f13a044a8a86fffbf2d485/blauwal3_timeseries-0.6.3.tar.gz",
    "platform": null,
    "description": "Blauwal3-Timeseries\r\n==================\r\n\r\nOrange add-on for analyzing, visualizing, manipulating, and forecasting time\r\nseries data. The add-on includes ARIMA and VAR models, model evaluation, time\r\nseries preprocessing, seasonal adjustment and a wide array of visualizations.\r\nSee [documentation](http://orange3-timeseries.readthedocs.org/).\r\n\r\nFeatures\r\n--------\r\n#### Use time series data\r\n* reinterpret data as time series\r\n* induce missing values\r\n* generate time series from Yahoo Finance stock market data\r\n\r\n#### Analysis of time series data\r\n* aggregate data by a given time interval\r\n* decompose the time series into seasonal, trend, and residual components\r\n* apply rolling window functions to the time series\r\n* make forecasts for the future\r\n* evaluate models\r\n\r\n#### Visualize time series data\r\n* visualize time series' sequence and progression\r\n* visualize variables' auto-correlation\r\n* visualize time series' cycles, seasonality, periodicity, and most significant periods\r\n",
    "bugtrack_url": null,
    "license": "GPLv3+",
    "summary": "\u7528\u4e8e\u63a2\u7d22\u65f6\u95f4\u5e8f\u5217\u548c\u987a\u5e8f\u6570\u636e\u7684\u84dd\u9cb8\u63d2\u4ef6\u3002",
    "version": "0.6.3",
    "project_urls": {
        "Homepage": "https://github.com/biolab/orange3-timeseries"
    },
    "split_keywords": [
        "time series",
        " sequence analysis",
        " orange3 add-on",
        " arima",
        " var model",
        " forecast"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "4743c65f2a618c1be6e0b2c17642cdfd9fc41a48b3dd1918fb5219e1a1d97147",
                "md5": "62f82176ef0cdd985c4e8b2db3a543cd",
                "sha256": "b33ecf547fd71b482a4772e6b380f3ac3a706455ca88683544b35de504c362c4"
            },
            "downloads": -1,
            "filename": "Blauwal3_Timeseries-0.6.3-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "62f82176ef0cdd985c4e8b2db3a543cd",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 302598,
            "upload_time": "2024-09-27T08:27:16",
            "upload_time_iso_8601": "2024-09-27T08:27:16.920193Z",
            "url": "https://files.pythonhosted.org/packages/47/43/c65f2a618c1be6e0b2c17642cdfd9fc41a48b3dd1918fb5219e1a1d97147/Blauwal3_Timeseries-0.6.3-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "27f31504a7b20e58a4fa09bb06fa6411915c06db19f13a044a8a86fffbf2d485",
                "md5": "c5371ff34a8785ac6d2c701f15cf80d5",
                "sha256": "a996b951230c5163544ae30f30533314acff70658b0199271b9343212e1942d9"
            },
            "downloads": -1,
            "filename": "blauwal3_timeseries-0.6.3.tar.gz",
            "has_sig": false,
            "md5_digest": "c5371ff34a8785ac6d2c701f15cf80d5",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 2286841,
            "upload_time": "2024-09-27T08:27:19",
            "upload_time_iso_8601": "2024-09-27T08:27:19.774038Z",
            "url": "https://files.pythonhosted.org/packages/27/f3/1504a7b20e58a4fa09bb06fa6411915c06db19f13a044a8a86fffbf2d485/blauwal3_timeseries-0.6.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-09-27 08:27:19",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "biolab",
    "github_project": "orange3-timeseries",
    "travis_ci": false,
    "coveralls": true,
    "github_actions": true,
    "tox": true,
    "lcname": "blauwal3-timeseries"
}
        
Elapsed time: 0.73981s