BlueWhale3-Text


NameBlueWhale3-Text JSON
Version 1.6.0 PyPI version JSON
download
home_pagehttps://github.com/biolab/orange3-text
Summary用于文本挖掘的蓝鲸附加组件。
upload_time2023-05-25 04:48:22
maintainer
docs_urlNone
author大圣实验楼
requires_python
license
keywords orange3-text data mining orange3 add-on
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage
            BlueWhale3 Text
============

Orange add-on for text mining. It provides access to publicly available data,
like NY Times, Twitter and PubMed. Further, it provides tools for preprocessing,
constructing vector spaces (like bag-of-words, topic modeling and word2vec) and
visualizations like word cloud end geo map. All features can be combined with
powerful data mining techniques from the Orange data mining framework.

See [documentation](http://orange3-text.readthedocs.org/).

Features
--------
#### Access to data
* Load a corpus of text documents
* Access publicly available data (The Guardian, NY Times, Twitter, Wikipedia, PubMed)

#### Text analysis
* Preprocess corpus
* Generate bag of words
* Embed documents into vector space
* Perform sentiment analysis
* Detect emotions in tweets
* Discover topics in the text
* Compute document statistics
* Visualize frequent words in the word cloud
* Find words that enrich selected documents


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/biolab/orange3-text",
    "name": "BlueWhale3-Text",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "orange3-text,data mining,orange3 add-on",
    "author": "\u5927\u5723\u5b9e\u9a8c\u697c",
    "author_email": "dashenglab@163.com",
    "download_url": "https://files.pythonhosted.org/packages/cf/6c/4d4829c2b6bb0529e1bfeb79921c8c43d4bc67712b5c6b915d7059f178c4/BlueWhale3-Text-1.6.0.tar.gz",
    "platform": null,
    "description": "BlueWhale3 Text\n============\n\nOrange add-on for text mining. It provides access to publicly available data,\nlike NY Times, Twitter and PubMed. Further, it provides tools for preprocessing,\nconstructing vector spaces (like bag-of-words, topic modeling and word2vec) and\nvisualizations like word cloud end geo map. All features can be combined with\npowerful data mining techniques from the Orange data mining framework.\n\nSee [documentation](http://orange3-text.readthedocs.org/).\n\nFeatures\n--------\n#### Access to data\n* Load a corpus of text documents\n* Access publicly available data (The Guardian, NY Times, Twitter, Wikipedia, PubMed)\n\n#### Text analysis\n* Preprocess corpus\n* Generate bag of words\n* Embed documents into vector space\n* Perform sentiment analysis\n* Detect emotions in tweets\n* Discover topics in the text\n* Compute document statistics\n* Visualize frequent words in the word cloud\n* Find words that enrich selected documents\n\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "\u7528\u4e8e\u6587\u672c\u6316\u6398\u7684\u84dd\u9cb8\u9644\u52a0\u7ec4\u4ef6\u3002",
    "version": "1.6.0",
    "project_urls": {
        "Download": "https://github.com/biolab/orange3-text/tarball/1.6.0",
        "Homepage": "https://github.com/biolab/orange3-text"
    },
    "split_keywords": [
        "orange3-text",
        "data mining",
        "orange3 add-on"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "2238a179b043d13f0218cae87ccbeca4afb11bc48c8b6b47b637a1c3065f88d7",
                "md5": "ba1e50308e5b26cb330d4de6fcaf1135",
                "sha256": "58cbd197b86d228afc596dafc829bfff6a523393da6b08a5a1d7ca8186046163"
            },
            "downloads": -1,
            "filename": "BlueWhale3_Text-1.6.0-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "ba1e50308e5b26cb330d4de6fcaf1135",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 17638989,
            "upload_time": "2023-05-25T04:48:11",
            "upload_time_iso_8601": "2023-05-25T04:48:11.355046Z",
            "url": "https://files.pythonhosted.org/packages/22/38/a179b043d13f0218cae87ccbeca4afb11bc48c8b6b47b637a1c3065f88d7/BlueWhale3_Text-1.6.0-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "cf6c4d4829c2b6bb0529e1bfeb79921c8c43d4bc67712b5c6b915d7059f178c4",
                "md5": "5fe5e2977aca361de81bb115fdc7be48",
                "sha256": "03bc432fef5eaa65007629545dffed7ee615bcc365afd617da7ea0b6e58b1370"
            },
            "downloads": -1,
            "filename": "BlueWhale3-Text-1.6.0.tar.gz",
            "has_sig": false,
            "md5_digest": "5fe5e2977aca361de81bb115fdc7be48",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 24865432,
            "upload_time": "2023-05-25T04:48:22",
            "upload_time_iso_8601": "2023-05-25T04:48:22.369813Z",
            "url": "https://files.pythonhosted.org/packages/cf/6c/4d4829c2b6bb0529e1bfeb79921c8c43d4bc67712b5c6b915d7059f178c4/BlueWhale3-Text-1.6.0.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-05-25 04:48:22",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "biolab",
    "github_project": "orange3-text",
    "travis_ci": false,
    "coveralls": true,
    "github_actions": true,
    "requirements": [],
    "tox": true,
    "lcname": "bluewhale3-text"
}
        
Elapsed time: 0.84159s