CCC-DoU


NameCCC-DoU JSON
Version 0.0.1 PyPI version JSON
download
home_pagehttps://github.com/Partha0312bio/CCC_DU
SummaryChatterjee Correlation coefficient calculator with p-value
upload_time2023-10-26 18:07:31
maintainer
docs_urlNone
authorShubhabrata Dokal
requires_python>=3.6
license
keywords chatterjee correlation coefficient non linear correlation calculation
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Chatterjee Correlation Coefficient in Python

[![forthebadge made-with-python](http://ForTheBadge.com/images/badges/made-with-python.svg)](https://www.python.org/)                 
[![Python 3.6](https://img.shields.io/badge/python-3.6-blue.svg)](https://www.python.org/downloads/release/python-360/)   

[Tutorial of Publishing Python Package](https://youtu.be/7AF3HvKz070)

## Usage

- Make sure you have Python installed in your system.
- Run Following command in the CMD.
 ```
  pip install CCC_DoU
  ```
## Example

 ```
# test.py
from CCC_DoU import CCC

## Taking the Dataset and calculate the Chaterjee Correlation Coefficient.
x=np.random.uniform(-2,2,100)
y=sin(2*x+3)

# Calculate CCC
CC=CCC(x,y)
  ```

## Run the following Script.
 ```
  python test.py
 ```






            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/Partha0312bio/CCC_DU",
    "name": "CCC-DoU",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": "",
    "keywords": "Chatterjee Correlation Coefficient,non linear correlation calculation ,",
    "author": "Shubhabrata Dokal",
    "author_email": "",
    "download_url": "https://files.pythonhosted.org/packages/74/4f/dbc674485baa3ecbbc306a0cff02e905a7d4900b18dc1fe8118fe765f422/CCC_DoU-0.0.1.tar.gz",
    "platform": null,
    "description": "# Chatterjee Correlation Coefficient in Python\r\n\r\n[![forthebadge made-with-python](http://ForTheBadge.com/images/badges/made-with-python.svg)](https://www.python.org/)                 \r\n[![Python 3.6](https://img.shields.io/badge/python-3.6-blue.svg)](https://www.python.org/downloads/release/python-360/)   \r\n\r\n[Tutorial of Publishing Python Package](https://youtu.be/7AF3HvKz070)\r\n\r\n## Usage\r\n\r\n- Make sure you have Python installed in your system.\r\n- Run Following command in the CMD.\r\n ```\r\n  pip install CCC_DoU\r\n  ```\r\n## Example\r\n\r\n ```\r\n# test.py\r\nfrom CCC_DoU import CCC\r\n\r\n## Taking the Dataset and calculate the Chaterjee Correlation Coefficient.\r\nx=np.random.uniform(-2,2,100)\r\ny=sin(2*x+3)\r\n\r\n# Calculate CCC\r\nCC=CCC(x,y)\r\n  ```\r\n\r\n## Run the following Script.\r\n ```\r\n  python test.py\r\n ```\r\n\r\n\r\n\r\n\r\n\r\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "Chatterjee Correlation coefficient calculator with p-value",
    "version": "0.0.1",
    "project_urls": {
        "Homepage": "https://github.com/Partha0312bio/CCC_DU"
    },
    "split_keywords": [
        "chatterjee correlation coefficient",
        "non linear correlation calculation ",
        ""
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "be91125459e4ce461c46d9f0b1ac3e990a57ea38eb0107a3d8339c155ee98b99",
                "md5": "4c97afbfd6027f404029ae7a2ad7fdc1",
                "sha256": "88c6a74f1d0ba1485661222a4423c30902a495fbaf5d2a96aec4c8e7b175652b"
            },
            "downloads": -1,
            "filename": "CCC_DoU-0.0.1-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "4c97afbfd6027f404029ae7a2ad7fdc1",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.6",
            "size": 3206,
            "upload_time": "2023-10-26T18:07:30",
            "upload_time_iso_8601": "2023-10-26T18:07:30.042395Z",
            "url": "https://files.pythonhosted.org/packages/be/91/125459e4ce461c46d9f0b1ac3e990a57ea38eb0107a3d8339c155ee98b99/CCC_DoU-0.0.1-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "744fdbc674485baa3ecbbc306a0cff02e905a7d4900b18dc1fe8118fe765f422",
                "md5": "1304c1137709138eed2cfc7eb005b556",
                "sha256": "87661c9f1640fcd340c6d26d2a0355d40e8507defdc699e97c53f9474f1d20c5"
            },
            "downloads": -1,
            "filename": "CCC_DoU-0.0.1.tar.gz",
            "has_sig": false,
            "md5_digest": "1304c1137709138eed2cfc7eb005b556",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 2977,
            "upload_time": "2023-10-26T18:07:31",
            "upload_time_iso_8601": "2023-10-26T18:07:31.820024Z",
            "url": "https://files.pythonhosted.org/packages/74/4f/dbc674485baa3ecbbc306a0cff02e905a7d4900b18dc1fe8118fe765f422/CCC_DoU-0.0.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-10-26 18:07:31",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "Partha0312bio",
    "github_project": "CCC_DU",
    "github_not_found": true,
    "lcname": "ccc-dou"
}
        
Elapsed time: 0.19829s