Name | CNSistent JSON |
Version |
0.7.1
JSON |
| download |
home_page | None |
Summary | Tools for imputation, segmentation, analysis, and plotting of Copy Number Segments (CNS). |
upload_time | 2024-12-16 23:53:45 |
maintainer | None |
docs_url | None |
author | None |
requires_python | >=3.9 |
license | MIT |
keywords |
cns
bioinformatics
copy number segments
genomics
|
VCS |
|
bugtrack_url |
|
requirements |
No requirements were recorded.
|
Travis-CI |
No Travis.
|
coveralls test coverage |
No coveralls.
|
![CNSistent Logo](https://cnsistent.readthedocs.io/en/latest/_images/Logo.png)
[![PyPI version](https://badge.fury.io/py/CNSistent.svg)](https://badge.fury.io/py/CNSistent)
[![Documentation Status](https://readthedocs.org/projects/cnsistent/badge/?version=latest)](https://cnsistent.readthedocs.io/en/latest/?badge=latest)
CNSistent is a Python tool for processing and analyzing copy number data. It is designed to work with data from a variety of sources. The tool is designed to be easy to use, and to provide a comprehensive set of analyses and visualizations.
## [**READ THE DOCS HERE**](https://cnsistent.readthedocs.io/en/latest)
CNSistent can be used as a Python package, or downloaded together with the respective data (PCAWG, TRACERx, TCGA, genomic locations):
## Installation links
1. [Full Bitbucket repository with ~1GB of data.](https://bitbucket.org/schwarzlab/cnsistent/src/main/REPOSITORY.md)
2. [PIP package only.](https://pypi.org/project/cnsistent/)
### [LICENSE](https://bitbucket.org/schwarzlab/cnsistent/src/main/LICENSE.txt)
Raw data
{
"_id": null,
"home_page": null,
"name": "CNSistent",
"maintainer": null,
"docs_url": null,
"requires_python": ">=3.9",
"maintainer_email": "Adam Streck <adam.streck@gmail.com>",
"keywords": "CNS, bioinformatics, copy number segments, genomics",
"author": null,
"author_email": "Adam Streck <adam.streck@gmail.com>",
"download_url": "https://files.pythonhosted.org/packages/74/ed/a5088859916d22ee9a85cd75ea9cbd143441a31e31ad7c6f4c24eebe1ba4/cnsistent-0.7.1.tar.gz",
"platform": null,
"description": "![CNSistent Logo](https://cnsistent.readthedocs.io/en/latest/_images/Logo.png)\n\n[![PyPI version](https://badge.fury.io/py/CNSistent.svg)](https://badge.fury.io/py/CNSistent)\n[![Documentation Status](https://readthedocs.org/projects/cnsistent/badge/?version=latest)](https://cnsistent.readthedocs.io/en/latest/?badge=latest)\n\nCNSistent is a Python tool for processing and analyzing copy number data. It is designed to work with data from a variety of sources. The tool is designed to be easy to use, and to provide a comprehensive set of analyses and visualizations.\n\n## [**READ THE DOCS HERE**](https://cnsistent.readthedocs.io/en/latest)\n\nCNSistent can be used as a Python package, or downloaded together with the respective data (PCAWG, TRACERx, TCGA, genomic locations):\n\n## Installation links\n\n\n 1. [Full Bitbucket repository with ~1GB of data.](https://bitbucket.org/schwarzlab/cnsistent/src/main/REPOSITORY.md)\n 2. [PIP package only.](https://pypi.org/project/cnsistent/)\n\n\n### [LICENSE](https://bitbucket.org/schwarzlab/cnsistent/src/main/LICENSE.txt)",
"bugtrack_url": null,
"license": "MIT",
"summary": "Tools for imputation, segmentation, analysis, and plotting of Copy Number Segments (CNS).",
"version": "0.7.1",
"project_urls": null,
"split_keywords": [
"cns",
" bioinformatics",
" copy number segments",
" genomics"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "6b9a794f377b70de812e4d872523a69b551d32da062c4852eb5ec7184b5687bb",
"md5": "b0dc8c65e204575d19d1c628e15c13c5",
"sha256": "68b6a5ba3f43ef4f5aa8cef0774693895ea0748e9d636d2f5c89842cdc1220bf"
},
"downloads": -1,
"filename": "cnsistent-0.7.1-py3-none-any.whl",
"has_sig": false,
"md5_digest": "b0dc8c65e204575d19d1c628e15c13c5",
"packagetype": "bdist_wheel",
"python_version": "py3",
"requires_python": ">=3.9",
"size": 72016,
"upload_time": "2024-12-16T23:53:38",
"upload_time_iso_8601": "2024-12-16T23:53:38.951428Z",
"url": "https://files.pythonhosted.org/packages/6b/9a/794f377b70de812e4d872523a69b551d32da062c4852eb5ec7184b5687bb/cnsistent-0.7.1-py3-none-any.whl",
"yanked": false,
"yanked_reason": null
},
{
"comment_text": "",
"digests": {
"blake2b_256": "74eda5088859916d22ee9a85cd75ea9cbd143441a31e31ad7c6f4c24eebe1ba4",
"md5": "25bf8fcc69f84320497408126436abb0",
"sha256": "cc993d97dd7da740ce28d568e222ac59ad0642674aa9c8337fbe13bda0770e46"
},
"downloads": -1,
"filename": "cnsistent-0.7.1.tar.gz",
"has_sig": false,
"md5_digest": "25bf8fcc69f84320497408126436abb0",
"packagetype": "sdist",
"python_version": "source",
"requires_python": ">=3.9",
"size": 28606704,
"upload_time": "2024-12-16T23:53:45",
"upload_time_iso_8601": "2024-12-16T23:53:45.326001Z",
"url": "https://files.pythonhosted.org/packages/74/ed/a5088859916d22ee9a85cd75ea9cbd143441a31e31ad7c6f4c24eebe1ba4/cnsistent-0.7.1.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2024-12-16 23:53:45",
"github": false,
"gitlab": false,
"bitbucket": false,
"codeberg": false,
"lcname": "cnsistent"
}