CVX2


NameCVX2 JSON
Version 0.1.3 PyPI version JSON
download
home_pagehttps://gitee.com/summry/cvx2
SummaryTools of CV(Computer Vision)
upload_time2024-11-30 23:34:52
maintainerNone
docs_urlNone
authorsummy
requires_python>=3.6
licenseNone
keywords cv computer vision machine learning deep learning torch
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            Usage Sample
''''''''''''

.. code:: python

        import torch
        from torch import nn
        from cvx2 import WidthBlock
        from cvx2.wrapper import ImageClassModelWrapper

        model = nn.Sequential(
            WidthBlock(c1=1, c2=32),
            nn.MaxPool2d(kernel_size=2, stride=2),
            WidthBlock(c1=32, c2=64),
            nn.MaxPool2d(kernel_size=2, stride=2),
            nn.Flatten(),
            nn.Linear(in_features=64*49, out_features=1024),
            nn.Dropout(0.2),
            nn.SiLU(inplace=True),
            nn.Linear(in_features=1024, out_features=2),
        )

        img = torch.randn(1, 1, 28, 28)
        print(model(img).shape)

        data_dir
         |__train
         |   |__class1
         |   |   |__001.jpg
         |   |   |__002.jpg
         |   |__class2
         |      |__001.jpg
         |      |__002.jpg
         |__test
         |   |__class1
         |   |   |__001.jpg
         |   |   |__002.jpg
         |   |__class2
         |      |__001.jpg
         |      |__002.jpg
         |__val
             |__class1
             |   |__001.jpg
             |   |__002.jpg
             |__class2
                |__001.jpg
                |__002.jpg

        model_wrapper = ImageClassModelWrapper(model)
        model_wrapper.train(data='data_dir', imgsz=28)
        result = model_wrapper.predict('data_dir/test/class1/001.jpg', imgsz=28)



            

Raw data

            {
    "_id": null,
    "home_page": "https://gitee.com/summry/cvx2",
    "name": "CVX2",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": null,
    "keywords": "CV, Computer Vision, Machine learning, Deep learning, torch",
    "author": "summy",
    "author_email": "xiazhongbiao@126.com",
    "download_url": "https://files.pythonhosted.org/packages/ef/e4/93812e1746336f2eef09f24d4f56990de4bc3f6bfe6ec5d7d4962ebc8bc7/CVX2-0.1.3.tar.gz",
    "platform": null,
    "description": "Usage Sample\n''''''''''''\n\n.. code:: python\n\n        import torch\n        from torch import nn\n        from cvx2 import WidthBlock\n        from cvx2.wrapper import ImageClassModelWrapper\n\n        model = nn.Sequential(\n            WidthBlock(c1=1, c2=32),\n            nn.MaxPool2d(kernel_size=2, stride=2),\n            WidthBlock(c1=32, c2=64),\n            nn.MaxPool2d(kernel_size=2, stride=2),\n            nn.Flatten(),\n            nn.Linear(in_features=64*49, out_features=1024),\n            nn.Dropout(0.2),\n            nn.SiLU(inplace=True),\n            nn.Linear(in_features=1024, out_features=2),\n        )\n\n        img = torch.randn(1, 1, 28, 28)\n        print(model(img).shape)\n\n        data_dir\n         |__train\n         |   |__class1\n         |   |   |__001.jpg\n         |   |   |__002.jpg\n         |   |__class2\n         |      |__001.jpg\n         |      |__002.jpg\n         |__test\n         |   |__class1\n         |   |   |__001.jpg\n         |   |   |__002.jpg\n         |   |__class2\n         |      |__001.jpg\n         |      |__002.jpg\n         |__val\n             |__class1\n             |   |__001.jpg\n             |   |__002.jpg\n             |__class2\n                |__001.jpg\n                |__002.jpg\n\n        model_wrapper = ImageClassModelWrapper(model)\n        model_wrapper.train(data='data_dir', imgsz=28)\n        result = model_wrapper.predict('data_dir/test/class1/001.jpg', imgsz=28)\n\n\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Tools of CV(Computer Vision)",
    "version": "0.1.3",
    "project_urls": {
        "Homepage": "https://gitee.com/summry/cvx2"
    },
    "split_keywords": [
        "cv",
        " computer vision",
        " machine learning",
        " deep learning",
        " torch"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "efe493812e1746336f2eef09f24d4f56990de4bc3f6bfe6ec5d7d4962ebc8bc7",
                "md5": "1da46b319f3ec6373be32e1cedb03af1",
                "sha256": "2b0ff038729fda3e274cc3a4c3461c09ce133bf911f27e978a544311c5ff5c90"
            },
            "downloads": -1,
            "filename": "CVX2-0.1.3.tar.gz",
            "has_sig": false,
            "md5_digest": "1da46b319f3ec6373be32e1cedb03af1",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 14755,
            "upload_time": "2024-11-30T23:34:52",
            "upload_time_iso_8601": "2024-11-30T23:34:52.487493Z",
            "url": "https://files.pythonhosted.org/packages/ef/e4/93812e1746336f2eef09f24d4f56990de4bc3f6bfe6ec5d7d4962ebc8bc7/CVX2-0.1.3.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-11-30 23:34:52",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "cvx2"
}
        
Elapsed time: 1.05039s