CVX2


NameCVX2 JSON
Version 0.3.1 PyPI version JSON
download
home_pagehttps://gitee.com/summry/cvx2
SummaryTools of CV(Computer Vision)
upload_time2025-02-10 09:41:23
maintainerNone
docs_urlNone
authorsummy
requires_python>=3.6
licenseNone
keywords cv computer vision machine learning deep learning torch
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            Usage Sample
''''''''''''

.. code:: python

        from torch import nn
        from cvx2 import WidthBlock
        from cvx2.wrapper import ImageClassifyModelWrapper

        model = nn.Sequential(
            WidthBlock(c1=1, c2=32),
            nn.MaxPool2d(kernel_size=2, stride=2),
            WidthBlock(c1=32, c2=64),
            nn.MaxPool2d(kernel_size=2, stride=2),
            nn.Flatten(),
            nn.Linear(in_features=64*49, out_features=1024),
            nn.Dropout(0.2),
            nn.SiLU(inplace=True),
            nn.Linear(in_features=1024, out_features=2),
        )

        data_dir
         |__train
         |   |__class1
         |   |   |__001.jpg
         |   |   |__002.jpg
         |   |__class2
         |      |__001.jpg
         |      |__002.jpg
         |__test
         |   |__class1
         |   |   |__001.jpg
         |   |   |__002.jpg
         |   |__class2
         |      |__001.jpg
         |      |__002.jpg
         |__val
             |__class1
             |   |__001.jpg
             |   |__002.jpg
             |__class2
                |__001.jpg
                |__002.jpg

        model_wrapper = ImageClassifyModelWrapper(model)
        model_wrapper.train(data='data_dir', imgsz=28)
        result = model_wrapper.predict('data_dir/test/class1/001.jpg', imgsz=28)



            

Raw data

            {
    "_id": null,
    "home_page": "https://gitee.com/summry/cvx2",
    "name": "CVX2",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.6",
    "maintainer_email": null,
    "keywords": "CV, Computer Vision, Machine learning, Deep learning, torch",
    "author": "summy",
    "author_email": "fkfkfk2024@2925.com",
    "download_url": "https://files.pythonhosted.org/packages/86/b2/e228b7198c8de29e639004faa9b4f7e50439923457ab7415b003f28ec2f1/CVX2-0.3.1.tar.gz",
    "platform": null,
    "description": "Usage Sample\n''''''''''''\n\n.. code:: python\n\n        from torch import nn\n        from cvx2 import WidthBlock\n        from cvx2.wrapper import ImageClassifyModelWrapper\n\n        model = nn.Sequential(\n            WidthBlock(c1=1, c2=32),\n            nn.MaxPool2d(kernel_size=2, stride=2),\n            WidthBlock(c1=32, c2=64),\n            nn.MaxPool2d(kernel_size=2, stride=2),\n            nn.Flatten(),\n            nn.Linear(in_features=64*49, out_features=1024),\n            nn.Dropout(0.2),\n            nn.SiLU(inplace=True),\n            nn.Linear(in_features=1024, out_features=2),\n        )\n\n        data_dir\n         |__train\n         |   |__class1\n         |   |   |__001.jpg\n         |   |   |__002.jpg\n         |   |__class2\n         |      |__001.jpg\n         |      |__002.jpg\n         |__test\n         |   |__class1\n         |   |   |__001.jpg\n         |   |   |__002.jpg\n         |   |__class2\n         |      |__001.jpg\n         |      |__002.jpg\n         |__val\n             |__class1\n             |   |__001.jpg\n             |   |__002.jpg\n             |__class2\n                |__001.jpg\n                |__002.jpg\n\n        model_wrapper = ImageClassifyModelWrapper(model)\n        model_wrapper.train(data='data_dir', imgsz=28)\n        result = model_wrapper.predict('data_dir/test/class1/001.jpg', imgsz=28)\n\n\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Tools of CV(Computer Vision)",
    "version": "0.3.1",
    "project_urls": {
        "Homepage": "https://gitee.com/summry/cvx2"
    },
    "split_keywords": [
        "cv",
        " computer vision",
        " machine learning",
        " deep learning",
        " torch"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "86b2e228b7198c8de29e639004faa9b4f7e50439923457ab7415b003f28ec2f1",
                "md5": "c2e136f51bcd39cfca17b452906f9854",
                "sha256": "4f75884e15ef90a0f0bcfa06d25eaa4dbb3d5e60d7eee1912fcadfe859417c1f"
            },
            "downloads": -1,
            "filename": "CVX2-0.3.1.tar.gz",
            "has_sig": false,
            "md5_digest": "c2e136f51bcd39cfca17b452906f9854",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.6",
            "size": 15086,
            "upload_time": "2025-02-10T09:41:23",
            "upload_time_iso_8601": "2025-02-10T09:41:23.703287Z",
            "url": "https://files.pythonhosted.org/packages/86/b2/e228b7198c8de29e639004faa9b4f7e50439923457ab7415b003f28ec2f1/CVX2-0.3.1.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2025-02-10 09:41:23",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "lcname": "cvx2"
}
        
Elapsed time: 2.38214s