CamoTSS


NameCamoTSS JSON
Version 0.1.7 PyPI version JSON
download
home_pagehttps://github.com/StatBiomed/CamoTSS
SummaryCamoTSS: Detection alternative TSS in single cells
upload_time2023-07-05 02:45:54
maintainer
docs_urlNone
author['Ruiyan Hou']
requires_python>=3.5
licenseApache-2.0
keywords transcript start site single-cell rna-seq
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            ============================================================
CamoTSS for alternative TSS analysis in single cells
============================================================
|pypi| 

.. |pypi| image:: https://badge.fury.io/py/CamoTSS.svg
       :target: https://pypi.org/project/CamoTSS/




Installation
============

You can install from this GitHub repository for latest (often development) 
version by following command line

.. code-block:: bash

  pip install -U git+https://github.com/StatBiomed/CamoTSS

In either case, add ``--user`` if you don't have the write permission for your 
Python environment.


Quick start
===========

Download test file
===================

You can download test file from figshare_.

.. _figshare: https://figshare.com/articles/dataset/CamoTSS_test_data/22641031

Here, you can download some large file include genome.fa, possorted_genome_bam_filtered.bam.

Alternatively, you can also download the reference genome fasta file from Ensembl or Genecode or website of 10x Genomics. 
 
Run CamoTSS 
=============

Here are three modes in CamoTSS : **TC+CTSS** , **TC** and **CTSS**.

When you run **TC+CTSS** mode, you will get TC result and then get the CTSS result based on the TC.

When you run **TC** mode, you will only get the TC result.

The **TC+CTSS** and **TC** mode have the same required files.

The --outdir is the only required parameter for **CTSS** mode. But the outdir should include output of TC.  

If you want to run **CTSS** mode, you must based on the output of TC.

You can run CamoTSS **TC+CTSS** mode by using test file according to the following code.

For the remaining modes, you can check this document_.

.. _document: https://camotss.readthedocs.io/en/latest/run_CamoTSS.html

.. code-block:: bash

   #!/bin/bash 
   gtfFile= $download/Homo_sapiens.GRCh38.105.chr_test.gtf
   fastaFile = $download/genome.fa
   bamFile= $download/possorted_genome_bam_filtered.bam
   cellbarcodeFile=$download/cellbarcode_to_CamoTSS

   CamoTSS --gtf gtfFile --refFasta fastaFile --bam bamFile -c cellbarcodeFile -o CamoTSS_out --mode TC+CTSS


Alternative TSS or CTSS detecting
=================================

To identify alternative TSS usage or alternative CTSS usage, Brie2 (Huang & Sanguinetti, 2021) is recommend to be used. 

Here, we provide an example exploiting BRIE2 to detect alterntive TSS/CTSS usage. 

You can check it in our manual_.

.. _manual: https://camotss.readthedocs.io/en/latest/runBRIE.html  


Detailed Manual
================

The full manual is here_, including:

`Preprocess`_

`Run CamoTSS`_

`Detect alternative TSS/CTSS`_

.. _here: https://camotss.readthedocs.io/en/latest/index.html

.. _Preprocess: https://camotss.readthedocs.io/en/latest/preprocess.html

.. _Run CamoTSS: https://camotss.readthedocs.io/en/latest/run_CamoTSS.html

.. _Detect alternative TSS/CTSS: https://camotss.readthedocs.io/en/latest/runBRIE.html



Reference
===========

Hou, R., Hon, C. C., & Huang, Y. (2023). CamoTSS: analysis of alternative transcription start sites for cellular phenotypes and regulatory patterns from 5'scRNA-seq data. bioRxiv, 2023-04.














            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/StatBiomed/CamoTSS",
    "name": "CamoTSS",
    "maintainer": "",
    "docs_url": null,
    "requires_python": ">=3.5",
    "maintainer_email": "",
    "keywords": "Transcript Start Site,single-cell RNA-seq",
    "author": "['Ruiyan Hou']",
    "author_email": "ruiyan@connect.hku.hk",
    "download_url": "https://files.pythonhosted.org/packages/f3/63/83929393bc24e6c9365d2ad05fda819fdf0c14bf413784a2bcb285a0af0f/CamoTSS-0.1.7.tar.gz",
    "platform": null,
    "description": "============================================================\nCamoTSS for alternative TSS analysis in single cells\n============================================================\n|pypi| \n\n.. |pypi| image:: https://badge.fury.io/py/CamoTSS.svg\n       :target: https://pypi.org/project/CamoTSS/\n\n\n\n\nInstallation\n============\n\nYou can install from this GitHub repository for latest (often development) \nversion by following command line\n\n.. code-block:: bash\n\n  pip install -U git+https://github.com/StatBiomed/CamoTSS\n\nIn either case, add ``--user`` if you don't have the write permission for your \nPython environment.\n\n\nQuick start\n===========\n\nDownload test file\n===================\n\nYou can download test file from figshare_.\n\n.. _figshare: https://figshare.com/articles/dataset/CamoTSS_test_data/22641031\n\nHere, you can download some large file include genome.fa, possorted_genome_bam_filtered.bam.\n\nAlternatively, you can also download the reference genome fasta file from Ensembl or Genecode or website of 10x Genomics. \n \nRun CamoTSS \n=============\n\nHere are three modes in CamoTSS : **TC+CTSS** , **TC** and **CTSS**.\n\nWhen you run **TC+CTSS** mode, you will get TC result and then get the CTSS result based on the TC.\n\nWhen you run **TC** mode, you will only get the TC result.\n\nThe **TC+CTSS** and **TC** mode have the same required files.\n\nThe --outdir is the only required parameter for **CTSS** mode. But the outdir should include output of TC.  \n\nIf you want to run **CTSS** mode, you must based on the output of TC.\n\nYou can run CamoTSS **TC+CTSS** mode by using test file according to the following code.\n\nFor the remaining modes, you can check this document_.\n\n.. _document: https://camotss.readthedocs.io/en/latest/run_CamoTSS.html\n\n.. code-block:: bash\n\n   #!/bin/bash \n   gtfFile= $download/Homo_sapiens.GRCh38.105.chr_test.gtf\n   fastaFile = $download/genome.fa\n   bamFile= $download/possorted_genome_bam_filtered.bam\n   cellbarcodeFile=$download/cellbarcode_to_CamoTSS\n\n   CamoTSS --gtf gtfFile --refFasta fastaFile --bam bamFile -c cellbarcodeFile -o CamoTSS_out --mode TC+CTSS\n\n\nAlternative TSS or CTSS detecting\n=================================\n\nTo identify alternative TSS usage or alternative CTSS usage, Brie2 (Huang & Sanguinetti,\u20092021) is recommend to be used. \n\nHere, we provide an example exploiting BRIE2 to detect alterntive TSS/CTSS usage. \n\nYou can check it in our manual_.\n\n.. _manual: https://camotss.readthedocs.io/en/latest/runBRIE.html  \n\n\nDetailed Manual\n================\n\nThe full manual is here_, including:\n\n`Preprocess`_\n\n`Run CamoTSS`_\n\n`Detect alternative TSS/CTSS`_\n\n.. _here: https://camotss.readthedocs.io/en/latest/index.html\n\n.. _Preprocess: https://camotss.readthedocs.io/en/latest/preprocess.html\n\n.. _Run CamoTSS: https://camotss.readthedocs.io/en/latest/run_CamoTSS.html\n\n.. _Detect alternative TSS/CTSS: https://camotss.readthedocs.io/en/latest/runBRIE.html\n\n\n\nReference\n===========\n\nHou, R., Hon, C. C., & Huang, Y. (2023). CamoTSS: analysis of alternative transcription start sites for cellular phenotypes and regulatory patterns from 5'scRNA-seq data. bioRxiv, 2023-04.\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
    "bugtrack_url": null,
    "license": "Apache-2.0",
    "summary": "CamoTSS: Detection alternative TSS in single cells",
    "version": "0.1.7",
    "project_urls": {
        "Homepage": "https://github.com/StatBiomed/CamoTSS"
    },
    "split_keywords": [
        "transcript start site",
        "single-cell rna-seq"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "f36383929393bc24e6c9365d2ad05fda819fdf0c14bf413784a2bcb285a0af0f",
                "md5": "428bf46decefcf479e61a10f522631be",
                "sha256": "c0996506d6ddf7b1418bdc3842d70662a7ca4e36d65b5e06baae89374ce86e77"
            },
            "downloads": -1,
            "filename": "CamoTSS-0.1.7.tar.gz",
            "has_sig": false,
            "md5_digest": "428bf46decefcf479e61a10f522631be",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.5",
            "size": 20841,
            "upload_time": "2023-07-05T02:45:54",
            "upload_time_iso_8601": "2023-07-05T02:45:54.635348Z",
            "url": "https://files.pythonhosted.org/packages/f3/63/83929393bc24e6c9365d2ad05fda819fdf0c14bf413784a2bcb285a0af0f/CamoTSS-0.1.7.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-07-05 02:45:54",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "StatBiomed",
    "github_project": "CamoTSS",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "camotss"
}
        
Elapsed time: 1.57987s