ChinnuAi


NameChinnuAi JSON
Version 1.2.5 PyPI version JSON
download
home_pagehttps://github.com/Kalasaikamesh944/ChinnuAi.git
SummaryChinnu AI: Quantum-inspired chatbot framework with deep learning integration.
upload_time2024-12-14 11:28:06
maintainerNone
docs_urlNone
authorN V R K SAI KAMESH YADAVALLI
requires_python>=3.7
licenseNone
keywords
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Chinnu AI with Quantum Integration 
# Gift for my best friend 


Chinnu AI is a quantum-inspired chatbot framework that merges traditional deep learning methods with quantum computing concepts to deliver advanced conversational experiences.

## Features

- **Quantum State Representation**: Utilize `QuantumState` for quantum-inspired computations.
- **Training Framework**: Train quantum-enhanced neural networks using `QuantumTrainer`.
- **Dynamic Neural Network**: Leverage PyTorch-based deep learning for conversational AI.
- **JSON-based Conversations**: Enable flexible interaction using structured JSON inputs.
- **Modular Design**: Easily extend or integrate into existing systems.

## Installation

1. Clone the repository:
   ```bash
   git clone https://github.com/yourusername/chinnu-ai.git
   cd chinnu-ai
   ```

2. Install dependencies:
   ```bash
   pip install -r requirements.txt
   ```

3. Install the package:
   ```bash
   pip install .
   ```

## Usage

### Training Chinnu AI

Here is an example to train Chinnu AI with quantum integration:

```python
import torch
from ChinnuAi import QuantumState, QuantumTrainer, initialize_chinnu_ai, train_chinnu_ai

# Initialize Quantum State and Trainer
initial_state = [1, 0, 0, 0]
target_state = [0.5, 0.5, 0.5, 0.5]
quantum_model = QuantumState(initial_state)
quantum_trainer = QuantumTrainer(quantum_model, training_data=None)

# Initialize Neural Network
input_size = 4
hidden_size = 8
output_size = 4
model = initialize_chinnu_ai(input_size, hidden_size, output_size)

# Example Dataset
dataset = [
    (torch.tensor([1, 0, 0, 0]), torch.tensor([0.5, 0.5, 0.5, 0.5])),
    (torch.tensor([0, 1, 0, 0]), torch.tensor([0.5, 0.5, 0.5, 0.5])),
]
dataloader = torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=True)

# Train the Model
epochs = 10
learning_rate = 0.01
train_chinnu_ai(model, quantum_trainer, target_state, dataloader, epochs, learning_rate)
```

### Live Chat with Chinnu AI

Chinnu AI can engage in real-time conversations based on JSON input:

```python
from ChinnuAi import chat_with_chinnu_ai
import json

# Example JSON input
json_input = '{"input": [1, 0, 0, 0], "responses": ["Hello!", "How can I assist?", "Here is your data.", "Goodbye!"]}'
response = chat_with_chinnu_ai(model, quantum_model, json_input)
print("Chinnu AI response:", response)
```

### Quantum State Manipulation

Chinnu AI allows you to directly manipulate quantum states for advanced computations:

```python
from ChinnuAi import QuantumState

# Initialize a Quantum State
qs = QuantumState([1, 0, 0, 0])

# Apply a Quantum Gate
qs.apply_gate(QuantumGates.H)
print("State after Hadamard Gate:", qs)

# Measure the State
measurement = qs.measure()
print("Measurement Outcome:", measurement)
```

### Example JSON Dataset

A sample JSON dataset for batch testing:

```json
{
    "data": [
        {
            "input": [1, 0, 0, 0],
            "responses": ["Welcome to Chinnu AI!", "How can I assist you today?", "Here is your data.", "Goodbye!"]
        },
        {
            "input": [0, 1, 0, 0],
            "responses": ["Hello again!", "Need assistance?", "Fetching details.", "See you soon!"]
        }
    ]
}
```

### Batch Testing with JSON

```python
import json
from ChinnuAi import chat_with_chinnu_ai

# Load the JSON file
with open('test_data.json', 'r') as file:
    test_data = json.load(file)

# Process each entry
for entry in test_data['data']:
    json_input = json.dumps(entry)
    response = chat_with_chinnu_ai(model, quantum_model, json_input)
    print("Input:", entry["input"], "Response:", response)
```

## License

This project is licensed under the MIT License. See the LICENSE file for details.

## Contributing

Contributions are welcome! Open an issue or submit a pull request to improve Chinnu AI.


            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/Kalasaikamesh944/ChinnuAi.git",
    "name": "ChinnuAi",
    "maintainer": null,
    "docs_url": null,
    "requires_python": ">=3.7",
    "maintainer_email": null,
    "keywords": null,
    "author": "N V R K SAI KAMESH YADAVALLI",
    "author_email": "saikamesh.y@gmail.com",
    "download_url": "https://files.pythonhosted.org/packages/0c/23/97f6ddbd8367ccc013d377668d5dff3af7d0863eab3ac51dd82a30a7030c/chinnuai-1.2.5.tar.gz",
    "platform": null,
    "description": "# Chinnu AI with Quantum Integration \n# Gift for my best friend \n\n\nChinnu AI is a quantum-inspired chatbot framework that merges traditional deep learning methods with quantum computing concepts to deliver advanced conversational experiences.\n\n## Features\n\n- **Quantum State Representation**: Utilize `QuantumState` for quantum-inspired computations.\n- **Training Framework**: Train quantum-enhanced neural networks using `QuantumTrainer`.\n- **Dynamic Neural Network**: Leverage PyTorch-based deep learning for conversational AI.\n- **JSON-based Conversations**: Enable flexible interaction using structured JSON inputs.\n- **Modular Design**: Easily extend or integrate into existing systems.\n\n## Installation\n\n1. Clone the repository:\n   ```bash\n   git clone https://github.com/yourusername/chinnu-ai.git\n   cd chinnu-ai\n   ```\n\n2. Install dependencies:\n   ```bash\n   pip install -r requirements.txt\n   ```\n\n3. Install the package:\n   ```bash\n   pip install .\n   ```\n\n## Usage\n\n### Training Chinnu AI\n\nHere is an example to train Chinnu AI with quantum integration:\n\n```python\nimport torch\nfrom ChinnuAi import QuantumState, QuantumTrainer, initialize_chinnu_ai, train_chinnu_ai\n\n# Initialize Quantum State and Trainer\ninitial_state = [1, 0, 0, 0]\ntarget_state = [0.5, 0.5, 0.5, 0.5]\nquantum_model = QuantumState(initial_state)\nquantum_trainer = QuantumTrainer(quantum_model, training_data=None)\n\n# Initialize Neural Network\ninput_size = 4\nhidden_size = 8\noutput_size = 4\nmodel = initialize_chinnu_ai(input_size, hidden_size, output_size)\n\n# Example Dataset\ndataset = [\n    (torch.tensor([1, 0, 0, 0]), torch.tensor([0.5, 0.5, 0.5, 0.5])),\n    (torch.tensor([0, 1, 0, 0]), torch.tensor([0.5, 0.5, 0.5, 0.5])),\n]\ndataloader = torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=True)\n\n# Train the Model\nepochs = 10\nlearning_rate = 0.01\ntrain_chinnu_ai(model, quantum_trainer, target_state, dataloader, epochs, learning_rate)\n```\n\n### Live Chat with Chinnu AI\n\nChinnu AI can engage in real-time conversations based on JSON input:\n\n```python\nfrom ChinnuAi import chat_with_chinnu_ai\nimport json\n\n# Example JSON input\njson_input = '{\"input\": [1, 0, 0, 0], \"responses\": [\"Hello!\", \"How can I assist?\", \"Here is your data.\", \"Goodbye!\"]}'\nresponse = chat_with_chinnu_ai(model, quantum_model, json_input)\nprint(\"Chinnu AI response:\", response)\n```\n\n### Quantum State Manipulation\n\nChinnu AI allows you to directly manipulate quantum states for advanced computations:\n\n```python\nfrom ChinnuAi import QuantumState\n\n# Initialize a Quantum State\nqs = QuantumState([1, 0, 0, 0])\n\n# Apply a Quantum Gate\nqs.apply_gate(QuantumGates.H)\nprint(\"State after Hadamard Gate:\", qs)\n\n# Measure the State\nmeasurement = qs.measure()\nprint(\"Measurement Outcome:\", measurement)\n```\n\n### Example JSON Dataset\n\nA sample JSON dataset for batch testing:\n\n```json\n{\n    \"data\": [\n        {\n            \"input\": [1, 0, 0, 0],\n            \"responses\": [\"Welcome to Chinnu AI!\", \"How can I assist you today?\", \"Here is your data.\", \"Goodbye!\"]\n        },\n        {\n            \"input\": [0, 1, 0, 0],\n            \"responses\": [\"Hello again!\", \"Need assistance?\", \"Fetching details.\", \"See you soon!\"]\n        }\n    ]\n}\n```\n\n### Batch Testing with JSON\n\n```python\nimport json\nfrom ChinnuAi import chat_with_chinnu_ai\n\n# Load the JSON file\nwith open('test_data.json', 'r') as file:\n    test_data = json.load(file)\n\n# Process each entry\nfor entry in test_data['data']:\n    json_input = json.dumps(entry)\n    response = chat_with_chinnu_ai(model, quantum_model, json_input)\n    print(\"Input:\", entry[\"input\"], \"Response:\", response)\n```\n\n## License\n\nThis project is licensed under the MIT License. See the LICENSE file for details.\n\n## Contributing\n\nContributions are welcome! Open an issue or submit a pull request to improve Chinnu AI.\n\n",
    "bugtrack_url": null,
    "license": null,
    "summary": "Chinnu AI: Quantum-inspired chatbot framework with deep learning integration.",
    "version": "1.2.5",
    "project_urls": {
        "Homepage": "https://github.com/Kalasaikamesh944/ChinnuAi.git"
    },
    "split_keywords": [],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "1d869aee3292fcabb2a48bb598f9227350bf8e09870d6a96897eda801fdd05e3",
                "md5": "7069d9d1766212097f4dbf09f2208c93",
                "sha256": "9c5a361fdeb897f14eccfe47e22533f65582d1d6df45ed9b3a8ae03e19438a38"
            },
            "downloads": -1,
            "filename": "ChinnuAi-1.2.5-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "7069d9d1766212097f4dbf09f2208c93",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": ">=3.7",
            "size": 6198,
            "upload_time": "2024-12-14T11:28:03",
            "upload_time_iso_8601": "2024-12-14T11:28:03.131673Z",
            "url": "https://files.pythonhosted.org/packages/1d/86/9aee3292fcabb2a48bb598f9227350bf8e09870d6a96897eda801fdd05e3/ChinnuAi-1.2.5-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        },
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "0c2397f6ddbd8367ccc013d377668d5dff3af7d0863eab3ac51dd82a30a7030c",
                "md5": "4741e15209afd4f86a49a374bdd3a8a3",
                "sha256": "065ca24d393e53734f5f888d6d3518178254d5737e92f9a31c4e6c155df70ff3"
            },
            "downloads": -1,
            "filename": "chinnuai-1.2.5.tar.gz",
            "has_sig": false,
            "md5_digest": "4741e15209afd4f86a49a374bdd3a8a3",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": ">=3.7",
            "size": 5898,
            "upload_time": "2024-12-14T11:28:06",
            "upload_time_iso_8601": "2024-12-14T11:28:06.351438Z",
            "url": "https://files.pythonhosted.org/packages/0c/23/97f6ddbd8367ccc013d377668d5dff3af7d0863eab3ac51dd82a30a7030c/chinnuai-1.2.5.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-12-14 11:28:06",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "Kalasaikamesh944",
    "github_project": "ChinnuAi",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "chinnuai"
}
        
Elapsed time: 0.43060s