ComputationalGraphPrimer


NameComputationalGraphPrimer JSON
Version 1.1.2 PyPI version JSON
download
home_pagehttps://engineering.purdue.edu/kak/distCGP/ComputationalGraphPrimer-1.1.2.html
SummaryAn educational module meant to serve as a prelude to talking about automatic differentiation in deep learning frameworks (for example, as provided by the Autograd module in PyTorch)
upload_time2023-02-02 17:56:35
maintainerNone
docs_urlNone
authorAvinash Kak
requires_pythonNone
licensePython Software Foundation License
keywords computing in a graph
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            

Consult the module API page at

      https://engineering.purdue.edu/kak/distCGP/ComputationalGraphPrimer-1.1.2.html

for all information related to this module, including information related
to the latest changes to the code.  

::

        from ComputationalGraphPrimer import *
        
        cgp = ComputationalGraphPrimer(
                       expressions = ['xx=xa^2',
                                      'xy=ab*xx+ac*xa',
                                      'xz=bc*xx+xy',
                                      'xw=cd*xx+xz^3'],
                       output_vars = ['xw'],
                       dataset_size = 10000,
                       learning_rate = 1e-6,
                       grad_delta    = 1e-4,
                       display_vals_how_often = 1000,
              )
        
        cgp.parse_expressions()
        cgp.display_network1()                                                                    
        cgp.gen_gt_dataset(vals_for_learnable_params = {'ab':1.0, 'bc':2.0, 'cd':3.0, 'ac':4.0})
        cgp.train_on_all_data()
        cgp.plot_loss()

          
            

Raw data

            {
    "_id": null,
    "home_page": "https://engineering.purdue.edu/kak/distCGP/ComputationalGraphPrimer-1.1.2.html",
    "name": "ComputationalGraphPrimer",
    "maintainer": null,
    "docs_url": null,
    "requires_python": null,
    "maintainer_email": null,
    "keywords": "computing in a graph",
    "author": "Avinash Kak",
    "author_email": "kak@purdue.edu",
    "download_url": "https://files.pythonhosted.org/packages/d3/6b/46ebf32c81c7b660b891a3da0260e389602dcf3b0dbc82bcaf69f9049114/ComputationalGraphPrimer-1.1.2.tar.gz",
    "platform": "All platforms",
    "description": "\n\nConsult the module API page at\n\n      https://engineering.purdue.edu/kak/distCGP/ComputationalGraphPrimer-1.1.2.html\n\nfor all information related to this module, including information related\nto the latest changes to the code.  \n\n::\n\n        from ComputationalGraphPrimer import *\n        \n        cgp = ComputationalGraphPrimer(\n                       expressions = ['xx=xa^2',\n                                      'xy=ab*xx+ac*xa',\n                                      'xz=bc*xx+xy',\n                                      'xw=cd*xx+xz^3'],\n                       output_vars = ['xw'],\n                       dataset_size = 10000,\n                       learning_rate = 1e-6,\n                       grad_delta    = 1e-4,\n                       display_vals_how_often = 1000,\n              )\n        \n        cgp.parse_expressions()\n        cgp.display_network1()                                                                    \n        cgp.gen_gt_dataset(vals_for_learnable_params = {'ab':1.0, 'bc':2.0, 'cd':3.0, 'ac':4.0})\n        cgp.train_on_all_data()\n        cgp.plot_loss()\n\n          ",
    "bugtrack_url": null,
    "license": "Python Software Foundation License",
    "summary": "An educational module meant to serve as a prelude to talking about automatic differentiation in deep learning frameworks (for example, as provided by the Autograd module in PyTorch)",
    "version": "1.1.2",
    "split_keywords": [
        "computing",
        "in",
        "a",
        "graph"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "d36b46ebf32c81c7b660b891a3da0260e389602dcf3b0dbc82bcaf69f9049114",
                "md5": "aeadec8305480183115d24895cabc770",
                "sha256": "7fd3769456735bbe215a5b86cf71deac70d5716fbe011731d047ec87c296e891"
            },
            "downloads": -1,
            "filename": "ComputationalGraphPrimer-1.1.2.tar.gz",
            "has_sig": false,
            "md5_digest": "aeadec8305480183115d24895cabc770",
            "packagetype": "sdist",
            "python_version": "source",
            "requires_python": null,
            "size": 77268,
            "upload_time": "2023-02-02T17:56:35",
            "upload_time_iso_8601": "2023-02-02T17:56:35.259815Z",
            "url": "https://files.pythonhosted.org/packages/d3/6b/46ebf32c81c7b660b891a3da0260e389602dcf3b0dbc82bcaf69f9049114/ComputationalGraphPrimer-1.1.2.tar.gz",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2023-02-02 17:56:35",
    "github": false,
    "gitlab": false,
    "bitbucket": false,
    "lcname": "computationalgraphprimer"
}
        
Elapsed time: 0.05175s