Consult the module API page at
https://engineering.purdue.edu/kak/distCGP/ComputationalGraphPrimer-1.1.2.html
for all information related to this module, including information related
to the latest changes to the code.
::
from ComputationalGraphPrimer import *
cgp = ComputationalGraphPrimer(
expressions = ['xx=xa^2',
'xy=ab*xx+ac*xa',
'xz=bc*xx+xy',
'xw=cd*xx+xz^3'],
output_vars = ['xw'],
dataset_size = 10000,
learning_rate = 1e-6,
grad_delta = 1e-4,
display_vals_how_often = 1000,
)
cgp.parse_expressions()
cgp.display_network1()
cgp.gen_gt_dataset(vals_for_learnable_params = {'ab':1.0, 'bc':2.0, 'cd':3.0, 'ac':4.0})
cgp.train_on_all_data()
cgp.plot_loss()
Raw data
{
"_id": null,
"home_page": "https://engineering.purdue.edu/kak/distCGP/ComputationalGraphPrimer-1.1.2.html",
"name": "ComputationalGraphPrimer",
"maintainer": null,
"docs_url": null,
"requires_python": null,
"maintainer_email": null,
"keywords": "computing in a graph",
"author": "Avinash Kak",
"author_email": "kak@purdue.edu",
"download_url": "https://files.pythonhosted.org/packages/d3/6b/46ebf32c81c7b660b891a3da0260e389602dcf3b0dbc82bcaf69f9049114/ComputationalGraphPrimer-1.1.2.tar.gz",
"platform": "All platforms",
"description": "\n\nConsult the module API page at\n\n https://engineering.purdue.edu/kak/distCGP/ComputationalGraphPrimer-1.1.2.html\n\nfor all information related to this module, including information related\nto the latest changes to the code. \n\n::\n\n from ComputationalGraphPrimer import *\n \n cgp = ComputationalGraphPrimer(\n expressions = ['xx=xa^2',\n 'xy=ab*xx+ac*xa',\n 'xz=bc*xx+xy',\n 'xw=cd*xx+xz^3'],\n output_vars = ['xw'],\n dataset_size = 10000,\n learning_rate = 1e-6,\n grad_delta = 1e-4,\n display_vals_how_often = 1000,\n )\n \n cgp.parse_expressions()\n cgp.display_network1() \n cgp.gen_gt_dataset(vals_for_learnable_params = {'ab':1.0, 'bc':2.0, 'cd':3.0, 'ac':4.0})\n cgp.train_on_all_data()\n cgp.plot_loss()\n\n ",
"bugtrack_url": null,
"license": "Python Software Foundation License",
"summary": "An educational module meant to serve as a prelude to talking about automatic differentiation in deep learning frameworks (for example, as provided by the Autograd module in PyTorch)",
"version": "1.1.2",
"split_keywords": [
"computing",
"in",
"a",
"graph"
],
"urls": [
{
"comment_text": "",
"digests": {
"blake2b_256": "d36b46ebf32c81c7b660b891a3da0260e389602dcf3b0dbc82bcaf69f9049114",
"md5": "aeadec8305480183115d24895cabc770",
"sha256": "7fd3769456735bbe215a5b86cf71deac70d5716fbe011731d047ec87c296e891"
},
"downloads": -1,
"filename": "ComputationalGraphPrimer-1.1.2.tar.gz",
"has_sig": false,
"md5_digest": "aeadec8305480183115d24895cabc770",
"packagetype": "sdist",
"python_version": "source",
"requires_python": null,
"size": 77268,
"upload_time": "2023-02-02T17:56:35",
"upload_time_iso_8601": "2023-02-02T17:56:35.259815Z",
"url": "https://files.pythonhosted.org/packages/d3/6b/46ebf32c81c7b660b891a3da0260e389602dcf3b0dbc82bcaf69f9049114/ComputationalGraphPrimer-1.1.2.tar.gz",
"yanked": false,
"yanked_reason": null
}
],
"upload_time": "2023-02-02 17:56:35",
"github": false,
"gitlab": false,
"bitbucket": false,
"lcname": "computationalgraphprimer"
}