ConformalImpact


NameConformalImpact JSON
Version 0.0.3 PyPI version JSON
download
home_pagehttps://github.com/tblume1992/ConformalImpact
SummaryConfrmal Based Impact Analysis.
upload_time2024-02-10 17:55:46
maintainer
docs_urlNone
authorTyler Blume
requires_python
license
keywords forecasting time series seasonality trend
VCS
bugtrack_url
requirements No requirements were recorded.
Travis-CI No Travis.
coveralls test coverage No coveralls.
            # Conformal Impact
Take Causal Impact and replace the Bayesian Structural Time Series Model with MFLES and the Basyesian posterior with Conformal Prediction Intervals.

## Quick Examnple an comparison to Causal Impact
```
intervention_effect = 400
np.random.seed(42)
series = np.random.random((130, 1)) * 400
x_series = series * .4 + np.random.random((130, 1)) * 50 + 1000
trend = (np.arange(1, 131)).reshape((-1, 1))
series += 10 * trend
series[-30:] = series[-30:] + intervention_effect

data = pd.DataFrame(np.column_stack([series, x_series]), columns=['y', 'x1'])

import matplotlib.pyplot as plt

plt.plot(series)
plt.plot(x_series)
plt.show()


from ConformalImpact.Model import CI


conformal_impact = CI(opt_size=20,
                      opt_steps=10,
                      opt_step_size=3)
impact_df = conformal_impact.fit(data,
                              n_windows=30,
                              intervention_index=100,
                              seasonal_period=None)

conformal_impact.summary()
conformal_impact.plot()





from causalimpact import CausalImpact

impact = CausalImpact(data, [0, 99], [100, 130])
impact.run()
impact.plot()
print(impact.summary())
output = impact.inferences
np.mean(output['point_effect'].values[-30:])
```

            

Raw data

            {
    "_id": null,
    "home_page": "https://github.com/tblume1992/ConformalImpact",
    "name": "ConformalImpact",
    "maintainer": "",
    "docs_url": null,
    "requires_python": "",
    "maintainer_email": "",
    "keywords": "forecasting,time series,seasonality,trend",
    "author": "Tyler Blume",
    "author_email": "",
    "download_url": "",
    "platform": null,
    "description": "# Conformal Impact\nTake Causal Impact and replace the Bayesian Structural Time Series Model with MFLES and the Basyesian posterior with Conformal Prediction Intervals.\n\n## Quick Examnple an comparison to Causal Impact\n```\nintervention_effect = 400\nnp.random.seed(42)\nseries = np.random.random((130, 1)) * 400\nx_series = series * .4 + np.random.random((130, 1)) * 50 + 1000\ntrend = (np.arange(1, 131)).reshape((-1, 1))\nseries += 10 * trend\nseries[-30:] = series[-30:] + intervention_effect\n\ndata = pd.DataFrame(np.column_stack([series, x_series]), columns=['y', 'x1'])\n\nimport matplotlib.pyplot as plt\n\nplt.plot(series)\nplt.plot(x_series)\nplt.show()\n\n\nfrom ConformalImpact.Model import CI\n\n\nconformal_impact = CI(opt_size=20,\n                      opt_steps=10,\n                      opt_step_size=3)\nimpact_df = conformal_impact.fit(data,\n                              n_windows=30,\n                              intervention_index=100,\n                              seasonal_period=None)\n\nconformal_impact.summary()\nconformal_impact.plot()\n\n\n\n\n\nfrom causalimpact import CausalImpact\n\nimpact = CausalImpact(data, [0, 99], [100, 130])\nimpact.run()\nimpact.plot()\nprint(impact.summary())\noutput = impact.inferences\nnp.mean(output['point_effect'].values[-30:])\n```\n",
    "bugtrack_url": null,
    "license": "",
    "summary": "Confrmal Based Impact Analysis.",
    "version": "0.0.3",
    "project_urls": {
        "Homepage": "https://github.com/tblume1992/ConformalImpact"
    },
    "split_keywords": [
        "forecasting",
        "time series",
        "seasonality",
        "trend"
    ],
    "urls": [
        {
            "comment_text": "",
            "digests": {
                "blake2b_256": "9a059c1d22ab89817a45ce0b324945634944ae6b264b8c2774ecf3afb4c1a82c",
                "md5": "f7a6d2354a7ed6cce5f03f645d5f506e",
                "sha256": "21219c14df14602c8da2c19c33eeef79770be3d573173ac30bb323eb34705263"
            },
            "downloads": -1,
            "filename": "ConformalImpact-0.0.3-py3-none-any.whl",
            "has_sig": false,
            "md5_digest": "f7a6d2354a7ed6cce5f03f645d5f506e",
            "packagetype": "bdist_wheel",
            "python_version": "py3",
            "requires_python": null,
            "size": 4673,
            "upload_time": "2024-02-10T17:55:46",
            "upload_time_iso_8601": "2024-02-10T17:55:46.474809Z",
            "url": "https://files.pythonhosted.org/packages/9a/05/9c1d22ab89817a45ce0b324945634944ae6b264b8c2774ecf3afb4c1a82c/ConformalImpact-0.0.3-py3-none-any.whl",
            "yanked": false,
            "yanked_reason": null
        }
    ],
    "upload_time": "2024-02-10 17:55:46",
    "github": true,
    "gitlab": false,
    "bitbucket": false,
    "codeberg": false,
    "github_user": "tblume1992",
    "github_project": "ConformalImpact",
    "travis_ci": false,
    "coveralls": false,
    "github_actions": false,
    "lcname": "conformalimpact"
}
        
Elapsed time: 0.20241s